
Agilent Technologies

InfiniBand interconnect tech-
nology uses a switched-fabric,
point-to-point architecture to
deliver new levels of scalability,
availability, and performance.
Scalability is delivered in part
by its switched network inter-
connect, and its automatic
reconfiguration of the network
upon addition or removal of
devices.

To improve availability,
InfiniBand technology utilizes
point-to-point interconnects,
allows for redundant paths
between devices with subse-
quent failover capability, and
includes integrated error detec-
tion and correction. Data is
transferred between InfiniBand
fabric elements via copper
cables or optical fiber. Beyond
the raw data transfer rates,
system-level performance is
improved by the concept of
intelligent channels, with com-
puting intelligence distributed
into the I/O system to offload
the task of controlling I/O from
processors.

A huge range of technologies is
required to support InfiniBand
from the lowest physical layers
on up through the higher layers
of its protocol stack. For physi-
cal-layer debug and validation
you should use tools such as
wide-bandwidth oscilloscopes,
Bit Error Rate Testers (BERTs),
vector network analyzers
(VNAs), and Time Domain
Reflectometers (TDRs). How-
ever, for system-level “functional”
validation of InfiniBand

Validate your InfiniBand Design
at the System Level

Understand your system-level tools and use them
effectively when debugging at the higher levels of the
InfiniBand protocol.

Perry Keller, Agilent Technologies

systems, logic analyzers and
protocol analyzers are the most
useful tools (figure 1).

An InfiniBand System

Figure 2 shows a diagram of a
typical InfiniBand system. The
lid of the box is removed to
show the CPU, chip set, and an
InfiniBand HCA (host channel
adapter). Outside the box is the
InfiniBand fabric. The arrows
represent the different links
that connect the various compo-
nents. The dots represent the
different types of test equip-
ment you might need to connect
to those links in order to debug
the complete system, as follows:

OSC = Oscilloscope
PA = Protocol Analyzer/

Traffic Generator
LA = Logic Analyzer
BE = Bit Error Rate Tester

Key Requirements for

System-Level Debugging

There are three main concepts
to keep in mind to do effective
system-level validation: broad
visibility, cross-correlation, and
stimulus diversity.

It is usually essential to have
broad visibility into your sys-
tem's behavior. If you are fortu-
nate enough to already know
the exact location of a particu-
lar problem, such as the PCI
bus or a particular channel or
component of the InfiniBand

2

Figure 1. InfiniBand’s complexity requires a wide range of support technologies.

Figure 2. A typical InfiniBand system showing interconnects to various components and appropri-
ate test equipment

fabric, then you may be able to
avoid cross-bus system valida-
tion and use a targeted bus tool.
(This could be a protocol ana-
lyzer and/or bus exerciser for
the PCI bus, or a protocol ana-
lyzer and/or traffic generator
for the InfiniBand bus).
However, if you are attempting
to track down system-level
problems, you must have broad
visibility across a range of
buses and links within the sys-
tem. Perhaps problems detected
on the InfiniBand fabric may
actually be generated from
incorrect traffic on the PCI bus.
You may also need to observe
behavior in your system on a
picosecond time scale, which is
especially true for InfiniBand.

Once you have obtained mea-
surements from different parts
of the system, you need to be
able to correlate all this activi-
ty. Cause and effect for a partic-
ular system-level problem are
not usually isolated to just one
part of the system; they can
often span the entire system.
An event may be detected in
one area, but the root cause of
the problem may actually be
somewhere else. So you need to
be able to correlate activity in
one part of the system with
what is going on in other parts
of the system.

Cross-Correlation

Cross-correlation takes two
forms. One is spatial correla-
tion: connecting what is hap-
pening at one particular point
in the system with something
else that is happening at anoth-
er physical point in the system
at the same time. System-level
debug requires you to correlate
information across two or more
different points in the system
so you can see the simultaneous
behavior at all of those points.

The other form of correlation
is temporal correlation: how
something that happens in
the system at one particular
moment in time relates to what
happens at another moment. A
good example of this would be
matching a request packet with
its corresponding response.

The final requirement for sys-
tem-level validation is a variety
of stimuli. You need to test your
system in a real-world environ-
ment because it is impossible to
model the real world perfectly
or to cover all possible condi-
tions and corner cases your
system is required to handle.

Real World

However, the real world can be
very hard to control. Once you
find a problem or suspect that
there are particular areas that

require extra attention, you
then need to provide a con-
trolled stimulus to your system
at specific points. By injecting
a controlled stimulus into your
system, you can set up a series
of tightly controlled tests allow-
ing you to reproduce specific
types of problems. Setting up
a series of regression tests that
exercises the whole system is a
good practice. These regression
tests should include specific
test cases each with a very
specific stimulus.

Only with a well-planned vari-
ety of stimuli can you cover all
cases and validate your system.
All of these testing and valida-
tion requirements create a need
for highly capable tools. You
need to be able to work across
the entire system, correlate
activities from picoseconds to
packets, handle the billions of
events that occur in the real
world, and also provide very
focused, directed, and control-
lable stimulus to your system.

Tool Selection for

InfiniBand System Validation

As you prepare to perform sys-
tem-level validation, you must
select the appropriate tools for
your test bench. Three basic
types of test tools are most
commonly needed for effective

3

debugging and validation of
InfiniBand systems at the high-
er protocol layers. You should
be familiar with what each of
these tools is optimized for and
how they complement other
available tools.

The first tool is a protocol
analyzer (PA) for InfiniBand,
the second is a logic analyzer
(LA) that has InfiniBand sup-
port, and the third is a traffic
generator to create controlled
InfiniBand traffic for system
validation. Each of these test
instruments has different
strengths.

A protocol analyzer focuses on
providing a comprehensive view
of information and data trans-
fer on just the InfiniBand link.
This instrument is optimized
for protocol measurements,
which tend to be hierarchical
in nature. For this reason, it
provides a hierarchical, brows-
er-type view of the InfiniBand
protocol. For instance, you
can click on specific packets
or pieces of packets to expand
the data for greater detail.

A logic analyzer is optimized for
providing cross-bus or multi-bus
correlation of information, and
provides a consistent way of
displaying data no matter

which bus is being monitored.
It is most useful for looking at
levels of the protocol up to the
transport layer, including sub-
net management datagrams, but
typically does not display infor-
mation up to the application
layer. Setting up a logic analyzer
and looking at measurement
results for an InfiniBand system
are accomplished similarly to
the way these procedures have
traditionally been done for
microprocessor buses and other
kinds of buses such as PCI/PCI-X.

The logic analyzer is also a very
powerful tool for being able to
“reach” inside ASICs that you
can't probe directly. It can
obtain measurements across the
entire system and allow you to
correlate information taken in
one part of the system with
information taken in another
part. This allows you to see
how, in time, events in one part
of the system affect events in
another part of the system, and
thus enables you to infer the
internal state of your system.

Validation Plan

Once you have selected your
tools, you then need to create
a validation plan for your
InfiniBand-based system. The
published InfiniBand standard
(www.infinibandta.org) with its
specifications and checklists
provides a roadmap for putting
the validation plan together.
The line items of the checklist
marked with a “C” are required
for compliance with the Infini-
Band specifications; the line
items marked with an “O” are
optional.

You can use the specification
to develop a structure and put
together a checklist for the test
plan. Behind each of the check-
list items is a more detailed
explanation of what that item
means. Reading the fine print
of the specification will help
you define a specific test case
and a specific test procedure
to validate your system against
that particular requirement of
the InfiniBand specification.

4

Validation Platform

The last thing to do prior to sys-
tem validation is to put together
a validation platform. Figure 3

shows a typical validation plat-
form, which will be used for the
examples described below. One
part of this platform is a server
system with a CPU, chip set,
and InfiniBand host channel
adapter (HCA). It is representa-
tive of the first InfiniBand
implementations available.

The other part of the platform
contains something for the serv-
er to talk to: a switch, another
HCA, or a real-world environ-
ment for validation purposes. If
you need a deterministic stimu-
lus, you can use an InfiniBand
traffic generator and have it
talk directly to the HCA.

Once you assemble the valida-
tion platform, have a test plan,
and have the proper tools, then
it's time to turn the power on,
see if the system works, and
then start working through
the checklists.

E X A M P L E 1 :

Link Power-Up Negotiation Failure

The first example of how to use
these tools to debug the system
is link power-up. This is the
first task that you would typi-
cally perform after running the
“smoke test”.

You plug all the cables together
and then attempt to power up
the system. You expect that the
InfiniBand channel will come
up, initialize itself, and the link
will be up and ready for work.
Unfortunately, you discover that

the link hangs after you power
up the system. All you know at
this point is that your system
is stuck in the link-down status.
Your problem is to figure out
why this happens and how to
prevent it from happening.

Initially you have little insight
into the root causes of the prob-
lem. Following a troubleshoot-
ing process can help you sys-
tematically uncover the source
of the problem and develop a
way to solve it. The steps for
debugging a problem such as
this are:

1) Focus in on the symptom and
obtain more information about
the failure condition.
2) Develop a working theory as
to why the failure occurred.
3) Confirm or disprove your
theory by making additional
measurements.
4) Develop and implement a fix
for the problem.
5) Confirm that the fix solves
the problem.

5

Figure 3. The validation platform used for the examples

Focus in on the Symptom

These steps will be described
further for the link power-up
negotiation failure example. The
first step is to focus in on the
symptom in an attempt to get
additional information about
why the system failed. In this
example, the only thing that you
initially know is that the link
was down when it should have
been up.

The first step is to set up the
logic analyzer to look at the PCI
bus during link power-up. You
should look at traffic going to
and from the HCA and simulta-
neously monitor the InfiniBand
link with the same logic analyzer
for time-correlated measure-
ments of the PCI bus and the
InfiniBand link (figure 4).

At some point the HCA will
return status information to the
CPU indicating that the link is
down. Knowing this, you can set
up the logic analyzer to trigger
on this “link down” status and
then look at the time-correlated
InfiniBand traffic to attempt to
discover something that might
provide a clue about the problem.

The results of this measurement
are shown in figure 5. The logic
analyzer display window on the
left shows InfiniBand traffic
going out from the HCA to the
far-end device. The window on

the right shows traffic coming
back from the far-end device
to the HCA being measured.

These displays show that the
system is still sending “Training
Sequence 1s” (TS1s) while the
far-end device is sending
“Training Sequence 2s” (TS2s).
When an HCA has completed its
configuration and is ready to
actually do something using the
InfiniBand protocol, it will
return TS2s, so you know at
this point that the far-end

device has completed configura-
tion. However, your system is
still sending TS1s, indicating
that it hasn't completed configu-
ration yet and is locked in a
link-down status. This informa-
tion shows that the channel is
functioning on an electrical
level, but there is some reason
why the system doesn’t com-
plete its configuration even
though the far-end device does
complete the configuration
process.

6

Figure 4. Using a logic analyzer to investigate the link power-up negotiation failure

Figure 5. Measurement results showing that the system is still sending TS1s while the
far-end device is sending TS2s

Develop a Working Theory

To determine why this is hap-
pening, you must make addi-
tional measurements to gain
sufficient insight to put togeth-
er a theory. You should now
focus on all status reads going
from the HCA to the CPU. (The
HCA sends an interrupt to the
CPU giving its current status as
it goes through the link power-
up negotiation process.) You
should still trigger the logic
analyzer’s acquisition on the
link-down status, but instead of
looking at all PCI traffic, you
should now focus on status
reads. You should continue to
monitor the InfiniBand traffic
to see how the status of the
HCA over time correlates with
the InfiniBand traffic over this
same period of time.

For this measurement, the dis-
play of the InfiniBand transmit
link shows that the HCA contin-
ued to transmit TS1s through-
out the measurement time peri-
od. TS1s were coming into the
HCA from the InfiniBand
receive link at the beginning of
the time period, but by the end,
TS2s were being received. The
trace of the PCI bus shows that
the HCA was sending the CPU
a timeout status.

This leads to a working theory:
If TS2s start coming in while
the system is still in a receiver
configuration state, something
gets confused and the HCA
never leaves link configuration.
Figure 6, taken from the pub-
lished InfiniBand standard,
shows graphically what the
working theory predicts. First,

the HCA goes into the receiver
configuration state and sends
out TS1s. When the link is
established, it should then start
sending out TS2s. The working
theory is that for some reason
the switch to receiving TS2s
instead of TS1s confuses the
HCA, and after 150 ms it
times out.

Confirm Your Theory

You would like to know whether
the system comes in at the top
of this state machine and then
immediately goes to the time-
out, or goes through some other
path (There are three other
time-out conditions that can
occur, each 2 ms long.) Knowing
this will help you figure out
where in the state machine
the problem is located.

To determine this, you need to
set up four logic analyzer mea-
surements, each of which
requires monitoring activity in
several parts of the system at
the same time. You need to set
up a logic analyzer trigger con-
dition that looks for a timeout
greater than 150 ms while the
system is receiving TS2s and
still transmitting only TS1s. If
the analyzer triggers, then you
know that the bold path in
Figure 6 was the path that was
followed. If the logic analyzer
does not trigger, then a differ-
ent path was followed.

7

Figure 6. The InfiniBand standard showing where the system may be getting stuck in the link con-
figuration state

To verify that none of the other
paths were followed, you can
set up the logic analyzer to trig-
ger on one of the other three
possible conditions. If the work-
ing theory is correct, none of
them should cause the logic
analyzer to trigger. But if one
of them does, then you know
something is wrong with the
working theory and you need
to revise it.

To set up a measurement that
triggers on the link power-up
failure, you need to look at the
receive and transmit traffic on
the InfiniBand channel, and the
PCI bus, so cross-bus triggering
is essential. You need to look
for the point in time when the
system starts receiving TS2s
instead of TS1s, so the logic
analyzer is going to monitor
the receive channel. When the
system begins to receive TS2s,
the logic analyzer will set a
global flag, allowing every
other analyzer to know that
the transition from TS1s to
TS2s has occurred.

When it detects the flag, the
analyzer that is monitoring the
PCI bus will start a timer and
begin looking for timeout sta-
tus. In other words, it is looking
for a timeout status that occurs
more than 150 ms after the
switch from TS1s to TS2s. If
this happens, the PCI bus ana-
lyzer will set a flag indicating

that the 150-ms timeout has
occurred. In the meantime,
another analyzer is looking at
the InfiniBand transmit link.
When it detects the second flag,
it verifies that TS1s are still
being transmitted. If so, then all
three conditions are satisfied
and the analyzer will trigger.
This process is diagrammed
in figure 7.

Figure 8 shows the logic analyzer
output from all three locations
(PCI bus, transmit channel, and
receive channel) when the trig-
ger is set up as described. You
need to carefully examine the
output and make sure that it is
what is expected to support
your working theory. By looking
at this data, you can have confi-
dence that the system is really
behaving the way you expect it
would, given its problem.

Figure 7. Method to trigger on the link power-up negotiation failure

Figure 8. The logic analyzer output from the PCI bus (a), transmit channel (b), and receive
channel (c)

8

a

b

c

Fix the Problem

The final steps are to fix the
problem and confirm that the
fix is correct. It often happens,
especially when you are debug-
ging ASICs, that in order to fix
the problem you need to go
back to simulation. You should
set up an environment that
reproduces the problem in sim-
ulation so that when you devel-
op a fix, you can prove that the
fix really works. You can close
the loop by taking real-world
data, adding it to the simulation
environment, implementing
your fix, and then running the
simulation to confirm that the
fix solves the problem. This
case can then be added to your
ASIC simulation regression test
suite so the problem does not
creep back in later.

E X A M P L E 2 :

RDMA Failure

A second example, further up
the stack of protocol layers, is
the failure of a remote Direct
Memory Access (RDMA) trans-
fer. Again, you start out with
very little information. An
RDMA transfer is set up, but for
some reason the data never
arrives at its destination. When
you run into a problem like this,
it's a good idea to go back to the
specification. In this case, there
are two parts of the specifica-
tion that govern this type of
RDMA transfer: how to do the
Write requests and how to set
up the memory to receive the
requests.

The fine print specifies that for
InfiniBand, all DMAs occur in
the virtual address space; they
aren't specified in terms of
physical addresses as are tradi-
tional DMA transfers. When you
are doing a DMA, you need to
give the destination a key that
says where you want this DMA
transfer to go and that the key
refers to a virtual address.

To accomplish this, you request
permission to access a remote
area of memory in the virtual
address space at the far side of
the channel. If a key to access
that part is returned, your
request has been granted. You
use that key whenever you
make a DMA transfer to specify
where you want it to go.

One way to debug a problem
like this RDMA failure is to use
the old tried and true mecha-
nism of signal tracing. This is a
different strategy than was used
in the previous example, in
which different parts of the sys-
tem were examined to make an
inference about what was going
on inside the HCA.

Signal tracing is a more
straightforward approach when
you are starting out with a DMA
transfer that does not show up
where it is supposed to. The
easiest way to debug a problem
like this is to follow the data
through the system, similar to
moving your scope probe from
point to point through a circuit.

9

Figure 9 shows how to set up the
logic analyzer to look at the
InfiniBand traffic and trigger
on the RDMA operation. You
want to follow the data as it
goes through the PCI bus and
into the memory system.
Because InfiniBand DMA trans-
fers are in the virtual memory
space, the MMUs are involved.
Therefore, you also want to look
at the CPU-to-chip-set commu-
nication as that is probably how
the MMUs become configured
and programmed.

If you have a traffic generator,
you can generate the RDMA
request and tell the traffic
generator to use a unique data
pattern in the DMA buffer: a
“signature” pattern that is easy
to follow as it flows through
the system.

Set the InfiniBand logic analyz-
er to trigger on the DMA
request and set the PCI and
memory analyzers to trigger
on the signature data pattern.
This enables you to see the
DMA as it passes through each
part of the system. You also
want to look at the CPU bus to
gain insight into how the MMU
is programmed.

For this example, the measure-
ment shows that the data buffer
actually makes it all the way
through into memory, but that
it was sent to the wrong physi-
cal memory location. This
points to a potential problem
with how the MMU tables were
set up.

By making this measurement,
you find out that the data
buffer did actually get trans-
ferred. You can figure out where
it went because you triggered
on the data pattern and were
able to look at the addresses
that the signature data pattern
was written to. You can then
compare these addresses to
the expected addresses to
determine what the MMU
programming error might be.

These measurements give you
enough information to establish
a working theory as to the root
cause of the problem, and then
you can follow through the rest
of the troubleshooting process.

E X A M P L E 3 :

Switch Failure Example

A third example, moving still
further up the protocol-layer
stack, is a switch failure
problem.

InfiniBand switches can be con-
figured to filter out raw pack-
ets: If a raw packet comes in on
one port, you can configure that
port to “drop it in the bit buck-
et” and not send it out. The
observed symptom of the prob-
lem is that raw packets are not
being filtered properly.

10

Figure 9. Logic analyzer setup to investigate the RDMA transfer failure

Virtual port 0 is where all
configuration information for
switches is sent. Perhaps virtu-
al port 0 never received the
switch configuration command,
or maybe it configured the
wrong port on the switch.

This is a fabric interconnect
problem, with packets going
through the fabric, coming in
one port of the switch, going
out another port, and possibly
also going through routers and
other devices. For this kind of
problem, you want to set up a
validation platform for fabrics
as shown in figure 10. This is an
area where protocol analyzers
and traffic generators really
shine, because they are opti-
mized for looking at InfiniBand
traffic at higher layers of the
protocol. There is a switch, a
protocol analyzer on various
ports to the switch, and traffic
generators creating very specific
traffic to make it easy to repro-
duce the problem.

This validation platform may
also require a logic analyzer
because for switches, virtual
port 0 often doesn't exist physi-
cally. It is called virtual port 0
because semantically it is port 0
of the switch, but physically it
may not actually have an

InfiniBand connector. It may be
implemented as a PCI or other
kind of side channel from the
controlling CPU into the switch
circuitry itself. You might need
to have a coordinated measure-
ment between the different pro-
tocol analyzers and logic analyz-
ers so that you probe enough
parts of the system.

With a validation platform like
this, you can generate raw pack-
ets going in, determine if the
raw packets are coming out, or
find out which port they should
be coming out of. You can also
look inside the switch to
attempt to determine what part
of the switch programming is
causing the problem.

Additional Applications

There are countless possible
problems when debugging and
validating InfiniBand systems
that require a system-level view
and the ability to look at many

different parts of the system.
Even for something as simple as
getting endian-ness wrong, you
probably need to look at the
InfiniBand channel, a PCI bus,
DRAM channels, and the
CPU bus.

When you are debugging and
validating InfiniBand-based sys-
tems, you need to take a sys-
tem-level approach. In general,
you must look at many locations
in the system and correlate
activity in one part with activity
in other parts. You should use
the InfiniBand specification to
help with developing the valida-
tion plan. The specification out-
lines all the requirements and
also organizes the requirements
into checklists. You can use the
checklists to help organize your
validation plan, and use the
details in the specification to
produce focused test descrip-
tions.

11

Figure 10. Fabric validation platform

To get product information related
to this topic, vist our Web site at
www.agilent.com/find/infiniband

Visit Agilent’s library of a application notes,
training courses, FAQs, tutorials, and more at
www.agilent.com/find/test

By internet, phone, or fax, get assistance
with all your test & measurement needs

Online assistance:
www.agilent.com/find/assist

Expanded from original article in Agilent
Measurement Solutions Volume 1. Issue 1

© Agilent Technologies, Inc. 2001
Printed in USA November 1, 2001
5988-4540EN

Agilent Technologies

It is important to understand
the strengths of your tools, to
know which one to select for a
particular task, and to be able to
use them effectively. Logic ana-
lyzers are strong at cross-bus
analysis and correlation, and
protocol analyzers are more use-
ful at higher-level protocol
analysis. Traffic generators are
helpful when you need a con-
trolled rather than a real-world
stimulus. If you can coordinate
your tools effectively, then most
of your really tough system
debugging problems can turn
out to be fairly straightforward
to trace to their root cause.

http://www.agilent.com/find/infiniband
http://www.agilent.com/find/test
http://www.agilent.com/find/assist

