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The dual-Dirac model is a tool for quickly estimating 
total jitter defined at a low bit error ratio, TJ(BER). The
deterministic and random subcomponents of the jitter 
signal are separated within the context of the model to
yield two quantities, root-mean-square random jitter 
(RJ) and a model-dependent form of the peak-to-peak
deterministic jitter, DJ(δδ). The total jitter of a system is
then estimated from RJ and DJ(δδ). 

This paper provides a complete description of the 
dual-Dirac model, how it is used in technology standards
and a summary of how it is applied on different types of
test equipment. The Q-scale formulation is described in
detail and is used to provide a simple visual description 
of the model’s features and to show how different 
implementations of the model can lead to different 
results. For an introduction to jitter analysis please 
see reference [1].

Section one is a short self-contained summary. The 
succeeding sections provide the complete reference 
material for understanding the summary. This format 
provides both the story-in-a-nutshell and the details-in-full
so that you can, hopefully, access the information you
need as quickly as possible – if you have comments or 
suggestions, accolades or criticisms, please send me a
note: ransom_stephens@agilent.com.
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three regions: at the crossing-point the distribution 
is dominated by DJ, at time-delays farther from the 
crossing-point the distribution is increasingly dominated 
by RJ until, far from the crossing point, in the asymptotic
limit, the tails follow the Gaussian RJ distribution. The
asymptotic tails of the distribution usually cause errors 
at the level of BER < 10–8. The ideal way to determine 
the behavior of the tails, and hence, TJ(BER) would be 
o deconvolve RJ and DJ. But without knowing the DJ 
distribution beforehand, there is no practical way to
deconvolve the distribution

The dual-Dirac model, Figure 1, provides the simplest 
possible distribution: the crossing-point is separated into
two Dirac-delta functions positioned at µL and µR, the 
DJ dominated region, followed by an artificially abrupt
transition to the RJ dominated tails. There are many 
ways to implement the dual-Dirac model, in all of them
estimating TJ(BER) is a matter of describing the tails of
the jitter distribution with the tails of two Gaussians of
width σ separated by a fixed amount DJ(δδ) ≡ |µL – µR|:

The dual-Dirac model is a Gaussian approximation 
to the outer edges of the jitter distribution displaced 
by DJ(δδ).

Conceptually, think of DJ closing the eye a fixed amount,
DJ(δδ), and the Gaussian RJ tails closing the eye an
amount that depends on the bit error ratio of interest.
Once σ and DJ(δδ) are measured the eye closure at any
BER can be estimated with: 

TJ(BER) ≅ 2QBERxσ + DJ(δδ), (1)

where QBER is calculated from the complementary error
function, as given in Table 2. Since σ is multiplied by 
2 QBER, the accuracy of TJ(BER) depends first on the
accuracy of the RJ measurement, σ, and second on the
accuracy of the DJ(δδ) measurement.

1. What The dual-Dirac Approximation Is And
What It Is Not
The dual-Dirac model is universally accepted for its utility
in quickly estimating total jitter defined at a bit error ratio,
TJ(BER), and for providing a mechanism for combining
TJ(BER) from different network elements. It relies on the
five assumptions given in Table 1.

Table 1: The dual-Dirac model assumptions.

1. Jitter can be separated into two categories, random jitter (RJ) 
and deterministic jitter (DJ).

2. RJ follows a Gaussian distribution and can be fully described in 
terms of a single relevant parameter, the rms value of the RJ 
distribution or, equivalently, the width of the Gaussian distribution, σ.

3. DJ follows a finite, bounded distribution.

4. DJ follows a distribution formed by two Dirac-delta functions. 
The time-delay separation of the two delta functions gives the 
dual-Dirac model-dependent DJ, as shown in Figure 1.

5. Jitter is a stationary phenomenon. That is, a measurement of the 
jitter on a given system taken over an appropriate time interval will 
give the same result regardless of when that time interval is initiated.

A measurement of TJ(BER) at low BER can only be 
performed on a Bit Error Ratio Tester (BERT) and takes
as long as is necessary to transmit about 10/BER bits2

(e.g., to measure TJ(10–12) would take about 70 minutes).
The first two assumptions in Table 1, that jitter is caused
by a combination of random and deterministic processes
whose distributions can be separated and that RJ follows
a Gaussian, are standard industry-wide assumptions; 
they are the key to how the dual-Dirac model is used to
estimate TJ(BER) from measurements of comparatively
low statistics. 

The components of jitter combine through convolution. 
We can think of the jitter distribution, e.g., the histogram
of the crossing-point of an eye diagram, as having 
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Figure 1: The convolution of the sum of two delta functions separated by DJ 
and a Gaussian RJ distribution of width σ. The underlying assumption of the
dual-Dirac approximation is that any jitter distribution can be modeled this way.
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Table 2: Values of QBER, the multiplicative 
constant for determining eye closure due 
to RJ, for different BER values.

QBER BER

6.4 10–10

6.7 10–11

7.0 10–12

7.3 10–13

7.6 10–14



While DJ(δδ) can always be measured, DJ(p-p) can only 
be measured in special cases. For example, when DJ is
composed exclusively of data-dependent jitter (DDJ) it 
can be measured by comparing the average transition
times of a repeating data pattern [Ref.5]. The inequality, 
Eq. (2), can be confusing when DJ(δδ) is mistaken as an 
estimate of DJ(p-p); for example DJ(δδ) may be smaller
than a subcomponent of DJ, but DJ(p-p) cannot be 
smaller than one of its subcomponents.

The inequality, Eq. (2), is a consequence of the dual-Dirac
model but does not detract from the model’s utility. 
On the contrary, DJ(δδ) meets the two necessary 
requirements of a quantity of interest for a standards
body:

DJ(δδ) is both well defined and observable

DJ(δδ) can also be measured on a variety of different 
types of test equipment. The true peak-to-peak DJ, 
DJ(p-p), on the other hand can only be measured in 
special circumstances, is not useful for estimating
TJ(BER), and doesn’t provide any benefit in diagnosing
problems.

Different implementations of the dual-Dirac model can
give widely varying results in σ and DJ(δδ) and hence
TJ(BER). There are two different categories types of 
dual-Dirac implementations, those that determine σ
by fitting some type of Gaussian expression (e.g., the 
complementary error function) to a jitter distribution 
and those that measure the timing noise spectrum and
equate it to σ. In both cases problems can occur when 
DJ is mistaken for RJ. Agilent Technologies solved this
problem when we introduced the 86100C DCA-J. The 
DCA-J measures the timing noise that is independent 
of the bounded deterministic jitter to obtain an accurate
value for σ. As shown in Figure 2 [details in Ref.3], 
extensive tests of all the available techniques on a 
precision jitter transmitter [Ref.4] show that the DCA-J 
technique (described in Ref. 5) is the most accurate, 
sensitive, and repeatable jitter analysis tool available.

Most of the confusion surrounding the application 
of the dual-Dirac model is caused by the fact that the 
dual-Dirac DJ is a completely different quantity than 
the peak-to-peak DJ. To distinguish the two, we’ll use the
notation DJ(p-p) and DJ(δδ). The distinction is easy to
understand: real DJ never follows the simple dual-Dirac
distribution and so it is unreasonable to expect the DJ
extracted from the dual-Dirac model to approximate the
actual peak-to-peak DJ. DJ(δδ) is a model dependent 
quantity that must be derived under the assumption 
that DJ follows a distribution formed by two Dirac-delta
functions, as shown in Figure 1. Generally,

DJ(δδ) < DJ(p-p) (2)
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Figure 2: Comparison of different jitter analysis techniques in estimating TJ(10–12) 
for a variety of different combinations of random, periodic, and data-dependent jitter.
The heavy solid line indicates the actual TJ(10–12) and the other lines give results
from different test sets. The DCA-J (heavy dotted line) gives the most accurate
results. For the details of the analysis, see ref. 3.
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It’s not hard to show that for bounded DJ(x) the 
asymptotic behavior of J(x) is the same as that of a
Gaussian,

(7)

where ξL and ξR are constants that depend on DJ(x). 
In the dual-Dirac model ξL = µL and ξR = µR as in Figure 1.

The asymptotic behavior of the jitter distribution, Eq. (7),
is the reason that the dual Dirac model can be used to 
represent a jitter distribution like that shown in Figure 3b.

When well-considered standards refer to DJ, it is DJ(δδ) 
to which they refer, either explicitly or implicitly.

Once values for DJ(δδ) and σ are obtained for a given 
network element, the values for combinations of elements
can be estimated with these rules:

σTotal = √σ 2
1  +σ 2

2  + . . . + σ 2
n (3)

DJTotal(δδ) ≈ DJ1(δδ) + DJ2(δδ) + . . . + DJN(δδ)

The simple rules, Eqs. (1) and (3), provide standards 
committees an easy way to divide a BER budget among 
a systems’ components. Notice in Eq. (3) that σTotal is
equal to the sum of the squares but DJ(δδ)Total is an
approximation to the sum of DJ(δδ)i, the distinction 
is explained in Section 3.3.

The full story is given in the rest of this note. We start 
in section 2, with some background material defining 
bit error ratio and TJ(BER). Section 3 gives a precise
description of the dual-Dirac model, including the Q-scale
representation, and how the model provides a simple 
technique for combining the TJ(BER) of different network
elements to estimate TJ(BER) of a system, Eq. (3). In
Section 4 we discuss different implementations of the
model, identify common pitfalls and show, for a specific
system, the relationship between DJ(δδ) and DJ(p-p) 
and how accurately σ and TJ(BER) are estimated in 
a naïve dual-Dirac implementation. In Section 5, we 
conclude with a discussion of the veracity of the standard
industry wide assumptions and a bulleted summary.

2. Total Jitter Defined At a Bit Error Ratio
Uncorrelated jitter distributions combine through 
convolution. The industry-wide assumption is that 
random jitter (RJ) follows a Gaussian distribution that 
is independent of all sources of DJ. The probability 
density function, or jitter distribution, can be measured 
by making a histogram of an eye-diagram crossing point,
Figure 3a. The jitter distribution, J(x) Figure 3b, can then
be described as RJ(x)_DJ(x) where the functional form 
of DJ(x) is not generally known or even observable, but
RJ(x) is given by a Gaussian distribution whose width 
is σ and x is the time-delay, or horizontal axis of the eye
diagram. If we write the jitter distribution as 

J(x) = RJ(x)*DJ(x) (4)
with

(5)

then
(6)
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Figure 3: (a) An eye diagram measured an Agilent 86100C DCA-J and, 
(b), the jitter distribution, J(x).



The eye opening at a given BER, t(BER), is given by the
separation of the left and right BER curves at a given
BER. For example, in Figure 4, the eye opening at BER =
10–12, is given by the difference of xL and xR – those
points where BER = 10–12. Formally, if we invert BER(x)
to get x(BER), then

t (BER) = xR (BER) – xL (BER). (11)

TJ(BER) is defined as the amount of eye closure due to 
jitter at a given BER; that is, TJ(BER) is the difference 
in the bit period and the eye opening:

TJ(BER) ≡ TB – ι(BER). (12)

The value of the dual-Dirac model is in its ability to 
provide a technique to quickly estimate total jitter at a
given bit error ratio, TJ(BER). Since TJ(BER) is defined 
in terms of the bit error we need to back up a bit and
define a few other things to make sense of it. The BER 
is defined as

(8)

where (x, V) is the position of the sampling point and
Nerr(x, V) is the number of errors that would be detected
from a total of N transmitted bits. An error is detected, 
for example, on a logic ‘0’ bit if the observed potential 
(or, for differential signals, the difference of the two 
potentials on the differential lines) is greater than V at 
the sampling time-delay x. In this document, we assume
that all errors result from timing errors alone – that is,
from jitter – which means that we can measure the
dependence of the BER on the time-delay, x, without 
being concerned about amplitude noise. 

The dependence of BER on x is the heart of how TJ(BER)
is defined. By scanning the time-delay position of the 
sampling point across the eye a bathtub plot, BER(x), 
as shown in Figure 4, can be measured on a bit error 
ratio tester. BER(x), can also be derived from the jitter 
distribution, J(x). Since BER(x) is given by the probability
for a logic transition fluctuating across the sampling point
time position, x, if we consider the left edge of Figure 3a
then the probability of a transition fluctuating across 
the point x is given by

BERL(x)  = ρT ∫ ∞

x
J(x′)dx′ (9)

where ρr is the ratio of the number of logic transitions to
the total number of bits, the transition density. Similarly,
on the right side of the eye diagram, near x = TB,

BERR(x) = ρT ∫ x

–∞
J(x′)dx′ (10)

so that   BER(x) = BERL(x) + BERR(x) [6].

Figure 4: A bathtub plot or BERTscan; the bit error ratio as a function 
of sampling point delay, x.
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Figure 5a the dashed DJ distribution is given by a single
frequency of sinusoidal jitter and, in Figure 5b, by a 
flat, bounded DJ distribution. The DJ distributions are
convolved with a Gaussian resulting in the smooth solid
curves. The effect of the convolution is to smooth the
sharp edges of the DJ distribution and J(x) obtains its
Gaussian tails. Notice how the smoothing effect of the 
convolution brings the sharp DJ edges inward. The 
vertical lines in Figure 5 are set at µR and µL demonstrating
the inequality, DJ(δδ) = |µR – µL | < DJ(p-p). The two
Gaussian curves (dash-dot) give the dual-Dirac 
approximation to the solid curve. It doesn’t matter that
the central part of the dual-Dirac distribution doesn’t
match the actual distribution; the important feature is
that the Gaussian tails match the tails of the true jitter
distribution as in Eq. (7) so that TJ(BER) can be 
estimated using Eqs. (9) through (12). 

3.1 Q-scale
To fully understand the dual-Dirac model it is useful to
study a linearized version of the bathtub plot, Figure 4. 
We introduce a variable Q, instead of BER, for the vertical
axis. The advantage of the “Q-scale” is that a Gaussian 
jitter distribution is a straight line in Q(x) which makes 
it easier to see how the dual-Dirac model really works in
estimating TJ(BER) and why DJ(δδ) < DJ(p-p). 

If we set the time-delay sufficiently far from the DJ 
distribution so that J(x) can be described by a Gaussian,
then BERL(x), using Eqs. (5) and (9), is given by 

(13)

Now let 

(14)

so that Eq. (13) becomes

The complementary error function is given by

(15)

so that Eq. (14) can be written

(16)

3. The dual-Dirac Model In Action
The fundamental assumption behind the dual-Dirac
approximation is that any deterministic jitter distribution
can be approximated by two delta functions separated 
by DJ, as shown in Figure 1. In this special case, DJ(δδ) =
DJ(p-p). A jitter distribution that closely follows a 
dual-Dirac could result from pure duty cycle distortion
(DCD) or square wave phase modulation but in practical
applications it is much more complicated.

Separate jitter components combine through convolution
– the mathematical process of folding one distribution
over another, Eq. (6) – it is important to understand the
process of convolution. To illustrate how RJ and DJ con-
volve, think of the smooth Gaussian RJ as a smearing
function imposed on the bounded DJ distribution. In
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Figure 5: Application of the dual-Dirac model to two ideal cases. 
In (a) the dashed DJ distribution is caused by a single frequency of 
sinusoidal jitter and in (b) the dashed bounded, constant (square wave)
DJ distribution could be caused by triangle-wave phase modulation. 
In these examples, σ = 0.15xDJ(p-p), the solid curve is the convolved 
jitter distribution and the dash-dot lines are the dual-Dirac approximation.
The vertical lines indicate where the dual-Dirac model sets the means 
of Gaussians, µR and µL.
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Notice the difference between DJ(p-p) and DJ(δδ) in
Figure 6: they are completely separate quantities. While
the accuracy of the dual-Dirac model is improved by
inserting a value for σ of greater accuracy, the accuracy 
is degraded by replacing DJ(δδ) with DJ(p-p); the dashed
lines in Figure 6a would be displaced inward from µL
to DJL and µR to DJR resulting in a considerable 
overestimate of TJ(BER). Once again, DJ(δδ) does 
not estimate of DJ(p-p).

Given Eqs. (13) through (18) we can see where the values
for QBER in Table 2 come from. The BER due solely to the
Gaussian tails is given by Eq. (16) with Q given by Eq.
(14). For transition density, ρr = 1/2, BER = 10–11 corre-
sponds to Q = 6.7, for BER = 10–12, Q = 7.0, and so on.
Equation (1) gives TJ(BER) due to the Gaussian tails,
2QBERxσ, plus a fixed displacement given by DJ(δδ):
TJ(BER) ≅ 2QBERxσ + DJ(δδ).

n the last step, I substituted the error function, erf(x), 
for the complementary error function, erfc(x); the two 
are related by erfc(x) = 1 - erf(x).

The reason we’re doing this is to map BER(x) as shown 
in the bathtub plot of Figure 5 to Q(x) where Gaussian 
distributions are straight lines. Next, we invert Eq. (16)
from BER(Q) to Q(BER),

(17)

where erf–1 indicates the inverse of the error function
(there are several good approximations to erf–1, but no
closed form solution). To this point we have assumed a
Gaussian distribution. But now that we have Q(BER) we
can generalize to any case. Remember, BER(x) describes
the dependence of the BER on the time-delay position 
of the sampling point. Similarly, by replacing BER with
BER(x) in Eq. (17) we get a definition of Q that does not
rely on the form of the jitter distribution. 

(18)

The important distinction is that Eq. (14) gives Q in the
special case where J(x) follows a Gaussian distribution,
but Eq. (18) is true for any jitter distribution.

Finally, turning to Figure 6 we can decipher how the 
dual-Dirac distribution models the actual distribution. 
In Figure 6a the solid line gives Q(x) and the dashed line
gives the dual-Dirac approximation to Q(x).

The statement – the dual-Dirac model is a Gaussian
approximation to the outer edges of the jitter distribution
displaced by a fixed amount, DJ(δδ) – is demonstrated 
in Figure 6. In the absence of DJ, J(x) would be 
purely Gaussian, the dual-Dirac model would give 
µL = 0 and µR = TB giving DJ(p-p) = DJ(δδ) = 0. 
In Figure 6a the convolution of a bounded DJ distribution
with a Gaussian RJ distribution results in Q(x) whose 
tails asymptotically approach the Gaussian tails as
described by Eq. (7) with slope 1/σ as required by 
Eq. (14). Figure 6b shows all of the parameters of the 
dual-Dirac model explicitly, it presents Q(x) centered
about a crossing point rather than about the center of 
the eye; the same symmetry as the jitter distributions
shown in Figure 3a and Figure 5. Figure 6b is made by
moving the right slope of Q(x) – due to eye closure from
the right crossing point – across the left slope and joining
it at x = 0. The advantage of Figure 6b is that TJ(10–12),
DJ(p-p), and DJ(δδ) can all be shown explicitly.
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Figure 6: (a) The Q-scale version of a bathtub plot – Q(x) rather than BER(x)
– where Gaussian effects are straight lines of slope 1/σ. The dashed line
gives the dual-Dirac approximation to Q(x). (b) The same plot, but with the
right side of the bathtub plot shifted over to the left to explicitly show
TJ(10–12) and emphasize the difference between DJ(p-p) and DJ(δδ).
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The peak-to-peak DJ of a convolution of uncorrelated 
distributions is the sum of the peak-to-peak DJs of the
components. But, unlike for RJ, we have no assurance 
that the DJ sources are uncorrelated. For example, if a
transmitter sends a signal with ISI into a channel, the
response of the channel – its filtering effects and so 
forth – will be different than it would were there no ISI
from the transmitter. In this case DJ(p-p) emitted from 
the channel is at most the sum of the DJ(p-p) of the 
transmitter and the channel,

DJTotal(p-p) ≤ DJ1(p-p) + DJ2(p-p) + … + DJN(p-p).

Of course what we really need is DJTotal (δδ), not 
DJTotal (p-p). It is not necessarily the case that the sum 
of DJi(δδ) gives DJTotal(δδ); hence the approximate 
relationship denoted by “≈“ in Eq. (3). Still the 
approximation should be reasonably accurate. 
As more DJ sources are convolved the resulting DJ 
distribution is smoother about the edges. The difference
between DJ(p-p) and DJ(δδ) is larger for smother 
distributions – for example, compare DJ(δδ) between
Figure 5a and b. It is therefore reasonable to expect that
DJTotal(δδ) resulting from the convolution of the DJ 
distributions of each network element should be smaller
than that given by the naïve sum in Eq. (3), rendering 
Eq. (3) a conservative estimate of the combined RJ and
DJ(δδ) of the system. In some cases the estimate for 
DJ(δδ) given in Eq. (3) can give an appreciable 
overestimate that could lead you to believe that a 
system would fail its BER requirement when it would
actually pass. The best way to determine how the effects
combine is to study the data-dependent jitter of the 
system. For example, a measurement of DDJ vs bit 
can be performed quite accurately and provide concise
information of how the DJ of different sources interferes.

From the perspective of interoperability – whose 
assurance is the primary role of a technology specification
– Eq. (3) is a conservative way to combine σ and DJ(δδ)
for use in Eq. (1) to estimate TJ(BER).

3.2 Application of the dual-Dirac model
Once µR, µL, and σ are obtained, TJ(BER) can be 
estimated by using Eqs. (9) and (10) with the dual-Dirac
jitter distribution in place of J(x) to calculate  xL(BER)
and xR(BER) and then TJ(BER) as in Eq. (12), or just use
Eq. (1), TJ(BER) = 2QBERxσ + DJ(δδ). Ultimately this
process is the extrapolation of the tails of the observed
distribution to the BER of interest. It can be a huge
extrapolation. In most cases J(x) is measured from the
transitions of about 106 bits, corresponding to a BER 
of more than 10–6; extending the tails down to 10–12 is 
an extrapolation of at least six orders of magnitude.

The dual-Dirac model is applied in many different ways on
different types of test equipment. Real-time oscilloscopes
from different vendors use vastly different techniques that
frequently yield widely varying results. A concise analysis
of the major differences of the techniques is provided
below in Section 4.

3.3 Combining the jitter of different elements in a system
The jitter for a system of network elements can be 
combined according to Eq. (3), repeated below, under 
the assumption that the jitter of different network 
elements is uncorrelated. 

σTotal = √σ 2
1  +σ 2

2  + . . . + σ 2
n (3)

DJTotal(δδ) ≈ DJ1(δδ) + DJ2(δδ) + . . . + DJN(δδ)

Remember that uncorrelated jitter distributions are 
combined by convolution, Eqs. (4) and (6). Since the 
convolution of two uncorrelated Gaussian distributions
gives a Gaussian distribution whose width is the RSS of
the individual widths, the Gaussian RJ of each component
can be combined through RSS as in Eq. (3).
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The accuracy of the fitting techniques is extremely 
sensitive to the region of the distribution to which the 
fit is applied. The fit should be performed on only the 
tails of the distribution that truly follows the underlying
RJ Gaussian given by Eq. (7), but it is difficult to 
determine where this asymptotic behavior begins.
Consider Q(x) in Figure 7. When Gaussian tails are fit 
to the region Q(x) > 5, where Q(x) is linear, the fit 
matches the asymptotes (i.e., the green dashed lines) 
and the slope gives an accurate estimate of 1/σ. But if 
the fit is applied to the region 2 < Q(x) < 4 then a line with
a smaller slope (larger σ) results (i.e., the red dot-dashed
lines) and yields an overestimate of TJ(BER). In this 
example, the fitting technique would indicate that the eye
is completely closed at BER = 10–12 (which corresponds 
to Q = 7.0). Whether or not the fit is applied low enough 
on the slopes depends on the statistical significance of 
the measurement. That is, the more data acquired, the 
farther down the slopes one can fit. The problem is that
the effect of convolving the RJ Gaussian and the bounded
DJ distribution yields a distribution whose tails are well
parameterized by a Gaussian with a larger value of σ
than that of the actual underlying RJ Gaussian even very
close to the DJ dominated part of the curve. As a result,
goodness-of-fit estimators (e.g., fit confidence levels or
correlation values) are rarely useful indicators of where
the distribution genuinely follows the underlying RJ
Gaussian. The only way to be certain that the fitting 
technique is accurate is to acquire a generous statistical
sample and appreciable increases in the sample size
require exponentially longer test times. 

While there is no way to be certain that the fit is 
performed far enough down the tails, you can at least
assure that the fit doesn’t contradict itself with some 
simple convergence criteria. By repeating the fit for 
successively larger statistical samples to get to lower 
values of Q, DJ(δδ) should converge to a constant value.
The slopes on the left and right edges should also 
converge to a common value (for electrical systems [7]).
Depending on the test device, it may not be possible 
to acquire enough data to meet these convergence 
requirements – remember, only a BERT can realistically
provide data well down the slopes to BERs of 10–9 and
lower. To make it worse, convergence doesn’t guarantee
that your fit is far enough down the asymptotes; 
convergence is necessary but not sufficient.

4. Different Implementations Of The 
dual-Dirac Model
The dual-Dirac model is applied in two fundamentally 
different ways:

• The fitting techniques analyze J(x) or BER(x) to 
determine both σ and DJ(δδ).

• The independent-σ techniques determine σ with 
a direct measurement of timing noise and then 
derive DJ(δδ) with a variety of techniques [3].

The fitting techniques are used to estimate TJ(BER) 
quickly on BERTs, oscilloscopes, and TIAs. There are two
distinct approaches to the fitting techniques that operate
in nearly equivalent ways. They both fit separate Gaussian
distributions to the left and right edges of the distribution
to yield four parameters σR, σL, µR, and µL; they both 
average σR and σL and assign σ = 1/2(σR + σL). In one
approach a simple Gaussian Eq. (5) is used to fit a 
fraction of the tails of the jitter distribution, J(x). In the
other approach the Gaussian inspired complementary
error function, Eq. (15), is fit to the tails of a bathtub plot,
BER(x) or Q(x). In ideal conditions the two techniques 
are equivalent. In ordinary conditions, the fit to the 
bathtub plot tends to be more repeatable because it is 
less affected by random fluctuations. 
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Figure 7: A plot of Q(x) demonstrating how fitting techniques can 
overestimate RJ if the fit is applied to regions of Q above the 
asymptotes. The dashed (green) lines indicate the properly applied 
dual-Dirac model, the dot-dash (red) lines indicate a fit that 
over-estimates RJ and underestimates DJ resulting in the mistaken 
impression that the eye is completely closed at BER=10–12 (i.e., Q ~ 7).
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It is interesting to contrast the fitting and independent-σ
techniques. In the fitting techniques one assumes that RJ
follows a Gaussian distribution before the measurement
and in the independent-σ techniques the assumption 
is made after it is measured. In practice, the fitting 
techniques break down when a set of DJ components 
convolve to form a DJ distribution with smoothly decaying
tails. The central limit theorem of statistics says that the
convolution of an infinite number of small uncorrelated
processes, regardless of their individual distributions, 
follows a Gaussian distribution. This means that the more
DJ components are included, the more that the resulting
total DJ distribution resembles a Gaussian and the larger
the statistical sample required of the fitting techniques.
The effect is easy to observe by introducing data-
dependent jitter with a backplane or by increasing the
length and complexity of the test pattern; the fitting 
techniques give larger values for σ unless the region
included in the fit is appropriately adjusted. The fitting
techniques cannot discriminate the bounded DJ from the
unbounded RJ and end up overestimating σ. Since σ has a
greater effect on TJ(BER) than does DJ(δδ), an apprecia-
ble overestimate of σ can give a substantial overestimate
of TJ(BER).

To illustrate the biases introduced by a fitting technique
consider Figure 8. Figure 8a, the ratio of the RJ fit results,
σfit, to the actual RJ, σtrue, as a function of σtrue /DJ(p-p),
shows how RJ tends to be overestimated. Notice that in
the limit of low and high RJ, σfit converges to σtrue. 
Figure 8b, the ratio of the DJ(δδ) results from a fitting
technique to the actual DJ(p-p) as a function of σtrue
/DJ(p-p), shows that DJ(δδ) and DJ(p-p) are very different 
quantities; only in the limit of zero RJ does DJ(δδ)
approach DJ(p-p). Figure 8b is an excellent demonstration
of the relationship DJ(δδ) < DJ(p-p). Figure 8c, the ratio 
of TJ(10–12) from a fitting technique to the true TJ(10–12)
as a function of σtrue /DJ(p-p), shows how fitting 
techniques tend to overestimate TJ. Since the data in 
this example is from a simulation, there are no statistical
fluctuations; hence, the results are more accurate than
one should reasonably expect from actual data.

When σ is measured independently, for example by 
measuring the rms timing noise in the frequency domain,
an accurate value can be obtained from a much smaller
data set than by fitting. The slopes of BER(x), or Q(x), 
are then fixed and the sum of two Gaussians can be
matched to the tails with only the centers of the
Gaussians, µR and µL, allowed to vary. 
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Figure 8: Implementation of a fitting technique to the dual-Dirac model for different simulated RJ/DJ ratios.
The fit is applied to simulated data from 10–6 < BER < 10–3.  In (a) the dual-Dirac estimate of RJ is typically
overestimated by 5% but varies with the ratio RJ/DJ; (b) demonstrates that DJ(δδ) and DJ(p-p) are 
different quantities; and in (c), the resulting over-estimate of TJ(10–12) is shown. DJ in this example is 
dominated by ISI from a backplane model and the data pattern is a pseudo-random binary sequence of 
length 27–1 at 2.5 Gb/s.
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The BERT measurements in Figure 9 were performed by
transmitting 3x109 bits in 1 ps steps of time-delay; the
complementary error function, Eq. (15), was fit to the
bathtub plots in the region BER < 10–4 in all cases. 
You can see how the fitting technique over-estimate σ
and TJ(10–12) as the complexity of the DJ distribution
increases. 

The advantages of the BERT fitting technique compared 
to fitting techniques implemented on oscilloscopes and
time interval analyzers are: 

1. It’s easy to understand the simple implementation 
of the dual-Dirac model.

2. There is a lot of freedom in setting the region of the 
curve that is included in the fit because the statistical 
sample can be increased at the full data rate.

3. And, most importantly, fast estimates of TJ(BER) 
can be confirmed by performing a measurement of 
TJ(BER) when in doubt [2].

To see how different implementations give different
results, consider Figure 9. The precision jitter transmitter
described in Ref. [4] was used to generate jitter signals 
on a 2.5 Gb/s, 27–1 pseudo-random binary sequence.
Measurements from real-time oscilloscopes, time interval
analyzers, the Agilent N4901B SerialBERT, and the 
Agilent 86100C DCA-J equivalent-time sampling 
oscilloscope are shown – only the measurements 
performed by Agilent equipment are labeled – the 
details of the study are given in Ref. [3]. The data in
Figure 9 is separated by column. Each column includes
data from a given jitter condition described by the bars 
at the bottom. You can see that all of the test sets perform
adequately when only periodic jitter is applied and, 
to a lesser extent when only RJ is applied. But as data
dependent jitter is introduced – by introducing different
lengths of backplane – the test sets give wildly disparate
results. Figure 9b shows that every test-set except the
DCA-J mistake DDJ for RJ. The situation deteriorates for
most test-sets as the number and magnitude of different
jitter sources are introduced. 

Figure 9 demonstrates that the Agilent 86100C DCA-J is
the only jitter analysis system that provides consistent,
accurate measurements of TJ(10–12) and  its sub-
components. The Agilent N4901B SerialBERT is the 
only other test-set that gives consistently accurate 
estimates of TJ(10–12). The BERT performs the simplest
form of the fitting technique implementation of the 
dual-Dirac model described in Section 4. The other fitting
techniques include algorithmic variations beyond the 
simple dual-Dirac model that make their results more 
difficult to understand. It is ironic that the real-time 
oscilloscopes and TIAs use more complicated algorithms
for estimating TJ(BER) and RJ, but yield less accurate
results.

12



One of the real-time oscilloscope techniques also uses an
independent-σ technique but consistently mistakes DDJ
for RJ anyway. The DCA-J technique is described in detail
in Ref. [5]. For several years the real time oscilloscopes
and TIAs have delivered inconsistent measurements of RJ,
PJ, DDJ, and estimates of TJ(10–12) but it is only with the
introduction of the DCA-J that reliable measurements in
this field have been realized.

The reasons that the DCA-J gives the most accurate 
results are simple. The DCA-J’s first step is to separate 
jitter that is correlated to the test pattern (i.e., data
dependent jitter) by using it’s built in pattern trigger 
and trigger divider to analyze each edge of the pattern
independently. The hardware-based DDJ separation 
technique immediately prevents DDJ from being confused
for RJ. RJ is then measured from just a data set whose
DDJ has been removed with an independent-σ technique.
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Figure 9: Comparison of jitter test-set results for TJ(10–12) and σ (i.e., RJ). Each column of 
the graphs corresponds to a jitter condition indicated by the bars at the bottom of the column. 
The left most data-point in each column is the calibrated level of jitter from the precision jitter
transmitter described in Ref. [4]. The error bars on the calibrated values indicate the systematic
uncertainty of the calibration. The unlabeled measurements were performed on common jitter 
test-sets such as real-time oscilloscopes and time interval analyzers; one of these measurements
is off the scale in the rightmost column. The data from the Agilent equipment is labeled. 
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The discrimination of timing and amplitude noise is
another difficulty. Crosstalk between neighboring data
paths causes errors by changing the crossing point 
position in time and is frequently referred to as non-
periodic bounded uncorrelated jitter (BUJ). But cross-talk
is amplitude noise, not timing noise - it’s not jitter, though
it causes errors the same way that jitter does. None of 
the jitter test-sets on the market are capable of reliably
analyzing BUJ simply because it can take on too many
forms. But without a more comprehensive technique for
analyzing amplitude and timing noise BUJ interferes 
with the implementation of the dual-Dirac model on 
all test equipment. 

The finite bandwidth of a receiver can cause amplitude
noise to timing noise conversion. The jitter properties 
of a receiver are usually tested with some type of jitter 
tolerance measurement – a test of the level of jitter that 
a receiver can tolerate. A jitter test-set with a receiver of
limited bandwidth can experience the same amplitude
noise to jitter conversion and overestimate the jitter 
on a signal. However, a receiver’s intrinsic noise increases
with bandwidth. The conflict is another case where the
DCA-J is the best solution. Receivers with very high 
bandwidth are available and the noise floor of the DCA-J
is significantly lower than that of real-time oscilloscopes
or TIAs.

In most cases noise is noise. The separation of jitter and
amplitude noise is not always transparent or performed
independently. For example, inter-symbol interference
contributes to both. ISI affects the slew rate and 
amplitudes of different bits in a signal as well as the 
transition time. Generally, in diagnosing the problems 
of a system, it is wise to keep in mind the complexity 
of the signal.

5. Conclusion

5.1 The reality of the standard, industry-wide assumptions
The assumptions of the dual-Dirac model, Table 1, can be
debated. The Gaussian RJ assumption is based on the idea
that RJ is caused by the thermal behavior of a Fermi gas
of electrons in a conductor that induces timing fluctua-
tions that follow a Gaussian distribution [8]. The debate
over the Gaussian RJ assumption centers on whether the
observed RJ levels are consistent with the levels one
should expect from purely thermal processes. The 
argument is that thermal processes, in most cases, can
only account for one or two picoseconds of rms RJ, but 
we frequently see three or four times that. The central
limit theorem begs the possibility that many small DJ
sources could convolve into a distribution that follows 
a Gaussian that is truncated and could easily be 
mistaken for RJ.

The last assumption, that jitter is a stationary phenomena, 
is nearly intractable. All jitter test-sets that estimate
TJ(BER) sample the data. None of them analyze a 
continuous data stream. Real-time oscilloscopes capture
finite lengths of data and post-process them; even when
separate captures are combined there is a long trigger 
re-arm time between data captures. BERTs analyze 
every bit as a digital stream with a given sampling point
position, and equivalent time sampling oscilloscopes 
build statistical distributions by repetitively sampling 
the time-delay and voltage of a signal. None of these 
techniques analyze a continuous data stream; none of
them can reliably detect nonstationarity of a jitter 
signal. The only jitter analysis technique that analyzes a
continuous data stream is phase-noise analysis of clock
signals commonly used in SONET/SDH jitter analysis. 
The SONET/SDH jitter analysis is band limited and 
does not relate timing-noise to BER; Ref. [9] provides a
comprehensive description of SONET/SDH jitter analysis. 
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http://cp.literature.agilent.com/litweb/pdf/5989-1146EN.pdf. 

6 Strictly speaking, Eqs. (9) and (10) are only valid if the observed 
jitter distribution, J(x), is bounded with a peak-to-peak value 
less than one bit period. To posit a bounded J(x) contradicts 
the unbounded nature of RJ. In practice the contradiction is 
not a problem because, in those systems where the tails of J(x) 
from the left and right overlap the eye is closed, TJ(BER) = TB. 
Thus there is no practical problem using Eqs. (9) and (10) to 
derive BER(x) from distributions measured on oscilloscopes.

7 For optical systems nonlinearities in the laser transmitter can 
cause the left and right slopes to have different slopes, but in 
electrical systems, the thermal noise should give the same 
values for δ on the left and right.

8 L.D.Landau and E.M.Lifshitz, Statistical Physics, Part 2, 3rd ed., 
Pergamon Press, 1980.

9 Agilent Tutorial, “Understanding Jitter and Wander 
Measurements and Standards, Second Edition,” Agilent 
Literature number 5988-6254EN, 2003. Available from 
www.Agilent.com.  

5.2 Summary
The dual-Dirac model:

• Provides a useful way to quickly estimate TJ(BER) 
at low BER.

• Is built on the assumption that RJ follows a Gaussian 
distribution that can be described by a single parameter, σ

• Defines an observable DJ(δδ) that can be measured 
in a variety of different ways but should not be 
confused with the true peak-to-peak DJ, DJ(p-p). 
Generally, DJ(δδ) < DJ(p-p).

• Provides a transparent way to combine σ and DJ(δδ) 
of different network elements to estimate TJ(BER) 
for a system.

• Provides observable, well defined quantities for use in 
technology standards.

• Can be applied in different ways that have different 
systematic uncertainties that can lead to different 
errors that make comparison of results difficult.

• Is most accurately implemented through the technique 
introduced on Agilent’s 86100C DCA-J that combines 
a hardware separation of jitter that is correlated to 
the test pattern from that which is uncorrelated with a 
direct measurement of timing noise, σ.
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