
1 of 17

Implementing a Supportable
VEE Architecture

White Paper

PC (Mac) MacDonald
 Agilent Technologies

1

Rev. B.00

PC (Mac) MacDonald
Systems Engineer
Application Engineering Organization

Implementing A Supportable VEE Architecture

2

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 2

How Can I Build A Supportable VEE Program?

There are many ways to construct a VEE program that is
simultaneously:

• Supportable
• Expandable
• Reasonably straightforward to debug

•There are plenty of poor, wanting, and even frightening ways to build software
•There is no single best approach, magic pill, or “silver bullet”
•This presentation illustrates the general way I approach constructing a VEE program

•I will do this by walking through the planning and architecture of a fairly
small, yet sophisticated program

3

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 3

It is assumed that you have the complete program
requirements:

• Measurements needed
• Instruments supported
• Data

• storage, review, post-p,
management

• Modes of operation
• Operator interfaces

• inputs, controls, indicators
… and so on

Some Preliminaries

Do you have a SRS?

Rules of Engagement
Until you have a firm understanding of exactly why the program is needed and what it is
expected to do, you can not expect to complete the programming task efficiently. In fact, until
you have put that stake in the ground that defines in writing what you are designing, you will
continue to suffer from creeping elegance, moving design criteria, and other generally elusive
& arbitrary requirements. It is imperative to have consensus among customers, users and
management that the software requirements are properly defined. This is particularly true if
you are an ‘in-house’ resource.
• If you don’t start with firm and accepted requirements, your work will always be late, never
be right, you’ll work lots of evenings and weekends, and your peers will be continually
blaming you for shoddy work because they probably won’t even grasp that they played a part
in the problem.
• It takes a great deal of effort to produce a good specification. However, people who refuse
to work any other way find that they get the software project done in about half the time it
takes persons with less discipline. They spend up to half of their software development
project time defining requirements and developing architectures before a single line of
software gets written. They spend lots less time debugging than their less organized peers.
• Once your execution task has begun, don’t even agree to consider changes without
schedule relief unless you have budgeted time in your project for those tasks. Make sure to
get buy in on this before you begin programming. If changes are imposed and demanded,
don’t be shy about putting in writing the impact this will have on schedule. This will initially
be difficult for most sponsors to digest, but over time they will come to respect you for
refusing the impossible and its associated failures.
• Most of us don’t like to plan. Many of us find it painful to negotiate. Those of us that can
manage both have an edge.

4

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 4

Architectural Topics We’ll Address
Program Substructure
Program Structure

This is the main view of the program we are about to discuss

5

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 5

Designing a Program Substructure

A solid program requires a highly organized way to manage
all this stuff:

• What MODE am I in?
• Which SETUP did I use?
• How much time is left in the test?
• Did I remember to calibrate?

• Is test STATUS OK?
• What the DUT temperature?
• What specimen is in the chamber?
• How many averages are left?

• Even the simplest programs require keeping track of a great many things.

6

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 6

Organizing Program Information

Most program substructure can be broken down
into three basic categories:

• Setup

• Status

• Data
Larger Programs can benefit from further segregation:

• Control

• Calibration

• Etc.

• These are the groups that seem to work for me. Your experience may vary.

7

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 7

Before You Begin Programming
Organize the substructure categories!

Setup: Setup Structure

GLOBAL VARIABLE 'Setup'

field names type/field dim/type/field notes/qualifiers

.aveCount int32 number of averages, init=8

.dirName string init="C:\"

.dutName string specimen under test name; init=""

.fileName enum short/medium/long; init=short

.intTime enum 1 to ? in powers of 2; init = 8

.freqStart float64 init=100, Hz

.freqStop float64 init=15e6, Hz

• The program using this Setup structure manages the state of only one instrument.
• I prefer Excel for this planning task, but practically anything will work.
• Notice how we have not only defined what the variable names are prior to beginning
the programming task, but we’ve also defined:

• variable type
• scalar or array (and all that subsequent baggage)
• allowable range of values
• units
• initial values
• a description if it isn’t obvious from the variable name

• Working these parameters out ahead of time provides a reference during software
development, and avoids making decisions in the heat of a complex logic development
task. I often develop this information during the requirements interviews… this is a
great way to uncover all manner of issues because it forces the end user to truly
engage the questions and process.
• If the number of instruments are sufficient, and especially if there are more than one
of each type, some of the structural elements might be arrays or structures in and of
themselves – that is, a structure of structures and arrays.

• You’ll never get a structure which is this complex to work if you try to design
it on the fly.

8

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 8

Before You Begin Programming
Organize the substructure categories!

Status: Status Structure

GLOBAL VARIABLE 'Status'

field names type/field dim/type/field notes/qualifiers

.calibrated uint8 been short cal yet? Init=0

.control string "PROGRAM" || "LOCAL"; init="LOCAL"

.counter int32 clear table counter; init=0

.err uint8 if error occurred = 1; init=0

.errNo int32 last error number; init = 99999

.errMsg string last error message; init = ""

.flexGridInitialized uint8 appears in program but probably not used

.measuring uint8 if measuring = 1; init = 0

.message string current operator message; init=""

• Here’s the STATUS structure
• We’ll skip the Control structure

9

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 9

When You Begin Programming
Convert your substructure categories into VEE Records!
Benefits of using records:
• Like types of

information
are logically
grouped

• When records are
implemented
as VEE Variables,
minimal wiring is
necessary among
VEE objects

• Easy formula access
with “.” notation

We do the same for STATUS and DATA.

We now have a VEE global variables named SETUP, STATUS and CONTROL that are
available anyplace in the program. A purist might tell you this is an extraordinarily
bad thing because when there are unexpected results, you don’t know where the
variable was changed. I agree to a certain level.
However, in a graphical programming language using this approach minimizes the
complexity of wired connections burrowing down multiple levels of functions calls,
along with the associated task of creating, naming and managing terminals.
Care must still be taken when altering global variables.

10

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 10

Accessing Our Records
Objects on the left are FORMULAS with the RESULTS
terminal hidden; on the right are CONSTANT input objects
with a DEFAULT VALUE terminal added…

The Record Variables
are easily accessed
anyplace in the
program

Labeling the objects saves lots of time now & @debug!

• There are other ways to access variable record the data in VEE records, but formulas
with DOT NOTATION is the most straightforward.
• Labeling the boxes like this does take a little time, but it saves hours of head
banging later.
• Putting a name on the object is also helpful when you put a group simultaneously
onto a panel – right clicking the object will tell show which parameter it is associated
with.

11

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 11

Designing A Supportable Program Structure
Mac’s Rules of Graphical Programming with VEE
1) Never allow your program objects

to occupy more than one screen
2) Implement carefully designed data,

status and control records
3) Use user functions and user

objects to accomplish 1)
4) Do not unnecessarily

constrain objects, but be
sure to constrain
objects that require it

5) VEE terminal arrangements cause
programs to naturally flow down
and to the right. Don’t fight it!

• When program objects or functions occupy more than one screen, you haven’t broken down
the tasks and operations to a sufficient level of granularity. Experienced textural language
programmers also try to limit functions to a page for the same reasons. Either way, it just
makes the function RADICALLY easier to visualize, understand and debug.

• I once had a customer ask me to modify a program with the main run loop that
spanned 200 VEE screens (!). I looked at the code for two days and still couldn’t
begin to understand it. It was so complex and scattered that it’s a miracle they got it
to work in the first place. We started over and built the run loop in 1/3 of a screen
using the VEE Sequencer Object. This thread is shown later in this presentation.

• Use userObjects to group specific functionalities if you think you’ll probably not use the
function in more than one place in your program (you can always change it to a userFunction
later.)
• Use userFunctions if

• you will use the functionality in more than one place in the program
• you need to programmatically choose which function to call
• you need to update the contents of a function panel at will
• it has a panel – an operator interface of any type

• Be sure to name your objects and functions in a very consistent and logical way.
• ALWAYS be sure to constrain objects with only an ASYNCHRONOUS terminal on the left
(input) side.

• these are easy to recognize -- they have a dashed line connecting them to the
upstream object

12

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 12

Designing A Serviceable Program Structure

Mac’s Rules of
Graphical
Programming
With VEE

6) Use showPanel() and
hidePanel() to control
when, where and how
large you want your
function panels to show

7) Use the Sequencer object
in conjunction with status
variables to control
complicated execution
requirements

• Implementing the object property SHOW ON EXECUTE is OK for beginners or for
quick and dirty stuff. ShowPanel and HidePanel allow the programmer to exert a great
degree of control on the user interface.

• SHOW ON EXECUTE doesn’t belong in a serious program because it severely
limits the programmer’s control over the user interface panel

Some Thoughts On the Sequencer
• For some reason VEE users either generally loath or are just frightened senseless
over the Sequencer

• Perhaps it’s because we used to pummel our training class students with
the Sequencer Lab in the Intro to VEE class (this has since been significantly
improved!)

• The Sequencer is the single most powerful object of all the VEE intrinsics
• Learn to use the Sequencer along with a solid data and control substructure,
and you’ll find you will NEVER need to make complex execution decisions
with if/then objects and spider webs of constraint connections
• The thread above is the one that replaced 200 pages of spider webs for a run
loop

• The Sequencer is your friend!

13

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 13

A Typical Program MAIN

Is this simple enough
for a MAIN?

• Run / Demo control is a user object with a panel

14

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 14

INIT Function Detail View

Is this function
too simple?

• There is no programming wisdom that forces a function to be complicated
• The function need only serve a clear purpose

15

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 15

userObject
initVariables
Detail View
• This program
uses the MS ActiveX
control msFlexGrid
so a variable
must be declared
to access and
control its
functionality

Initialize your variables and records at the beginning of your program.

16

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 16

Function initStatus Detail View
• initSetup appeared around slide 9

• Note how the terminal names are in alphabetical order
• This wasn’t an accident – it just makes the RECORD object easier to
troubleshoot.
• Sometimes I’ll put a terminal like VERSION at the top if it makes life easier.
• In any case, order or grouping has no bearing on execution or memory
efficiency.

• Experienced programmers will normally initialize DATA variables to ‘-9999’ or
something that is clearly bogus

• It helps to spot problems very quickly
• We’ll skip inspection of the initData module

17

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 17

Function Impedance Detail View

• Note use of
UNTIL BREAK /
OK construct

• This is NOT a
RUNAWAY
LOOP

• Function Impedance is the heart of this program
• It’s the first panel the operator sees when the program starts
• It is where the program is exited
• All functionality returns to Impedance upon completion of a task

• The UNTIL BREAK / OK construct used in Impedance is a very efficient way to
operate your program

• This construct uses ZERO PERCENT of CPU while it is waiting for an
operator to select the next step
• This makes both the program and computer responsive to the operator
• VEE Toggle objects with a RESET control pin behave much differently

• NEVER use an open or unconstrained UNTIL BREAK construct to build a runaway
loop unless you have a specific reason to do so!

• It will use 100% of the CPU cycles for the fastest computer you can find
• It will cause the program and the entire computer to be unresponsive
because the computer is servicing a runaway loop
• Adding more CPU power just wastes cycles faster
• This is the #2 problem I find in customer software (right after functions that
take up 200 pages {no kidding….}]
• Use events, interrupts, ON CYCLE objects, or SRQs instead

18

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 18

Function Impedance Panel View

• This program uses panels dynamically placed upon panels
• In this program the Impedance function panel is what I would call the MAIN
or ROOT panel because it’s what all action and control returns to
• The STATUS and SETUP STATE functionalities shown on page 4 are
separate panels placed on IMPEDANCE at run time

19

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 19

Function statusWindow Panel & Detail Views

• Why no inputs
or controls?

• This is the first of two sub panels shown on the main view
• The function has no controls – it consists solely of indicators

• It is shown via the showPanel() function
• Calling this function (it has no arguments) merely updates the status fields,

• This makes it a simple task to update the panel information whenever it is
required
• If this status view did not exist as a separate function, it would be very
difficult to update it at will

• The reason for a status panel?
• Measurements can take a long time.
• Studies have shown that a typical computer user will wait about 5 seconds
for something to happen before they start pounding keys, racing the mouse, or
generally get impatient
• You can expect this time interval to shrink as computers and networks get
faster while our expectations become greater
• A constantly updating status screen assures the impatient that, indeed, the
request is being processed

20

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 20

Function setupState Panel View

• This is the second sub panel on the main view
• All operator inputs are found on this panel

21

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 21

Function setUpState Detail View (partial)

Details of function setUpState:
• The Two Corollaries to Mac’s Rules of Graphical Programming Rule (1) are:

a) If you are going to use more than one screen, have a really good reason for it
b) If you must use more than one screen, be sure to go DOWN the page!

(because you can use the page up/down controls on your keyboard to navigate easily)
• Function setUpState has one argument, opFlag.

• Entering the function with opFlag = 0 (as done in function Init) causes the record
variables in the second column to be read into the DEFAULT VALUE pins of the various
constants in the third column.

• The information shows up immediately on the panel view, since it has already
been placed with a ShowPanel call

• No other action takes place, since the DEFAULT VALUE pins added to all the
CONSTANT objects in column three are VEE ASYNCHRONOUS INPUTS, the
objects update, but do not operate

• Note the dashed line connecting column two objects to column three objects --
this indicates a connection to ASYNCHRONOUS INPUTS

• Thus the result of calling with opFlag = 0 is that the user interface (panel) is
prepopulated with the default setup parameters.

• After the operator is satisfied with the parameters, the function is called with opFlag = 1,
and the third and fourth columns execute, setting the record variables in the fourth
column to their new values

This technique is a useful way to get data from a default or recalled state, modify it, and stuff it back
into the program variables.

22

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 22

Program Runtime View – Initial Screen

Some user interface philosophies I embrace:
• Color should be used sparingly, and always have a specific purpose in any user interface
• Studies have shown that radical colors disturb operators

• Pastels are generally preferred; it’s OK to use RED or GREEN, etc., but use it sparingly, and
for a meaningful purpose!

• In this program
• Blue pastel coloring is used for operational cues
• Brighter pastels are used for warning indicators or operations that might otherwise cause
the program to stop doing what it is doing

• Note that the navigational controls are all located in one place
• If there were auxiliary controls they would be on the right, if possible.
• The bottom of this panel has been clipped off to show more detail – thus the lack of balance.

• Note also that
• Operator inputs are colored light gray
• Operator input labels are in blue sunken boxes
• Status information appears in blue flat boxes
• Input groups are labeled with medium gray sunken boxes
• The only color that is not completely quiet is the QUIT control – by design

• Note also that one would usually proceed from Data Directory down the page to Quit for normal
operation -- operators find this to be a fairly intuitive arrangement
• There are three different panels here, so it is necessary to select Lock Panel Position in the function
PROPERTIES menus to keep the Impedance panel from occluding the other two function panels

23

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 23

Program Operation
After the operator selects a target file for the data to be
written to, he must calibrate prior to executing a test.

Pressing the TEST SAMPLE control on the IMPEDANCE calls function MEASURE.

The first thing that MEASURE does is check the calibration status.
• Calibration status is checked via variable status.calibrated

• The operator is forced to calibrate prior to running test
• Control is returned to function Impedance if the operator tries to test without
calibrating

After calibrating, pressing TEST SAMPLE again causes function Measure to execute

24

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 24

Function Measure

Function Measure
• Has no panel
• checks calibration status
• sets up instrument with function prepareInstrument
• checks file name status
• calls object doTheMeasurement
• calls function displayResults

25

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 25

Function prepareInstrument

Function prepareInstrument
• The function begins with a call to errClear

• This is a general module used elsewhere
• clears any existing instrument errors with an SPOLL
• Re-sets the instrument to interrupt (SRQ) on error

• The SRQ interrupt feature is not actually used in this version
• The function calls setUpState(1)

• Reads operator supplied measurement options shown on slide 21
• The function updates statusWindow
• The function sends the ASCII set up commands to the instrument in the a4194a
object

• The output pin on the right side of the a4194a object is the ERROR pin
• On ERROR condition from I/O box, calls errHandlerIO

• Most likely cause of error here would be timeout or instrument power
off

• The function calls spollHandler to see if the ERROR bit is set in the instrument
• Most likely cause of error here would be a bad command or combination
thereof

• statusWindow is refreshed

26

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 26

Object
doTheMeasurement

UserObject doTheMeasurement
• performs an SPOLL to clear the status register bit 6 (SRQ)
• triggers the measurement
• Waits for interrupt on measurement done
• Calls function spollHandler

• Using an interface event (SRQ) to trigger the measurement complete actions is very efficient
• You can have multiple instruments performing simultaneous tasks

• As each task completes, the instruments pull SRQ
• service routine determines which instrument and action to take

• There is no need to use a WAIT or DELAY function in ANY PROGRAM except for
debug purposes – always use SRQs or delayed poling with an ON CYCLE object.
• Allows operator interface to be active during measurement

• Permits operator to abort a long measurement
• Allows countdown or status update while measurement is active
• Makes life more fulfilling for the operator (ahem…)

• You usually don’t get this kind of functionality with a canned driver
• That’s why Direct I/O in VEE is so powerful

Notice how a NOTE PAD object is used to keep track of the proper commands? This is a
valuable aid when returning to enhance or debug the software after even a couple of days
have passed.

27

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 27

Function
spollHandler

Function spollHandler
• If more than one instrument is present, program must determine which
instrument called for service
• Finds out why interrupt occurred

• makes sure data is ok and no errors
• returns to Impedance with messages if errors are caught

• Eventually calls object getIt, which reads the data back to the program
• Calls functions to plot, show table, save data, etc.

28

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 28

Object getIt

UserObject getIt reads data directly into structure variable myData using formulas and
dot notation.

29

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 29

Function displayResults - Panel View

Function displayResults – Panel View
• We’ve now returned to function Measure
• Measure calls function displayResults

• Displays data in Table form if desired via MSFLEXGRID ActiveX control
• Saves Data to disc if desired in tab separated variable format (TSV)

• TSV data is simple to import into Excel
• Direct placement of data into worksheet in VEE 7.5 new Excel
objects, or via ActiveX Automation is straightforward, but requires
Excel on host computer

• The VEE to Excel object technique is taught in the Intro VEE
training class
• ActiveX Automation and .NET control techniques are taught
in the Advanced VEE training class

• Returns to Impedance

30

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 30

Function displayResults – Detail View

• This structure type should be looking pretty familiar by now!

• This ends our dissection of the program structure

31

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 31

A Couple of Common Sense Suggestions

Back Up Strategy
Mac’s 4 Rules of Backup
Do it
• Frequently
• Often
• Regularly
• To more than one physical location

• I REALLY LOATH having to do any task twice
• I have the scars to show that I truly came upon this wisdom the hard way

VEE crashes during development. So do LabView and Visual Studio, because it’s all
software running in Windows. Go figure. Even Rocky Mountain Basic had its bad
days. If you’ve not experienced this phenomenon, you probably don’t do much
programming
• It is thus essential to have some dependable system of keeping track of what’s what
if you are going to squirrel backups away in lots of places

• For my program name I generally use a short, project related prefix that never
changes, followed by
• an integer that increments every day I work on the program, followed by
• a letter that indicates each time I make a logic leap that could break
something that is already working.

• I have anywhere between 1 and a couple dozen daily incremental backups that never
leave my development system
• I back up the end of every day to a system in another state, or, if in a hurry, I zip my
program and email it to myself at work and at home
• This kind of paranoia has saved my bacon on countless occasions
• How much is your time worth? Your reputation? Dependable people don’t lose
stuff!

32

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 32

A Couple of Common Sense Suggestions

Revision Control
Never let a document or software module out of your control without
embedding some form of unambiguous revision control & date
information:
• Functions or libs – embedded in name & internally
• Programs

• in status structure (shown on initial view)
• Internally
• possibly in name

• Documents – in the properties, on the front & every page

When I am discussing or comparing a program or document with a customer, I
always ensure that, literally, we are on the same page.

33

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 33

In Conclusion –
Implementing a Supportable VEE Architecture
• Have firm, detailed & unambiguous requirements before
you begin any software development.

• Take time to plan a detailed program substructure &
architecture; stop to update your underlying planning
documents as the program changes, while the details are
still fresh.

• Have a disciplined approach to building, releasing and
supporting your software – those outlined in this
presentation will do, but there are many other approaches.

Look for Application Notes And Other Information On Our Website

LXI – LAN Extensions for Instruments:
www.agilent.com/find/lxi

Agilent VEE Pro:
www.agilent.com/find/VEE

Agilent Instrument Drivers:
www.agilent.com/find/drivers

Agilent I/O Technology, Agilent Connection Suite 14.1:
www.agilent.com/find/io

Test System Developer Guides:
www.agilent.com/find/system

(Look for “Test System Developers Guides”)

34

Implementing A Supportable
VEE Architecture

PC (Mac) MacDonald
Rev. B.00 Page 34

About The Author

PC (Mac) MacDonald, a Test Automation Systems Engineer at
Agilent Technologies, holds an engineering degree from Purdue
University.
Mac has been automating test applications on various program
development platforms for decades, and, among other things, is
currently an instructor for Agilent’s VEE Pro & PNA/COM/Visual
Basic Customer Education classes.
You can contact Mac via e-mail at

pcmacd@agilent.com | pcmacd@gmail.com

or by telephone at 714/935-5425

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2006

Printed in USA, March 2006
5989-4914EN

17 of 17

Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk
and problems. We strive to ensure that you get the test and measurement capabilities
you paid for and obtain the support you need. Our extensive support resources and
services can help you choose the right Agilent products for your applications and apply
them successfully. Every instrument and system we sell has a global warranty. Two
concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its
advertised performance and functionality. When you are choosing new equipment, we
will help you with product information, including realistic performance specifications and
practical recommendations from experienced test engineers. When you receive your
new Agilent equipment, we can help verify that it works properly and help with initial
product operation.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and
measurement services, which you can purchase according to your unique technical and
business needs. Solve problems efficiently and gain a competitive edge by contracting
with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site
education and training, as well as design, system integration, project management, and
other professional engineering services. Experienced Agilent engineers and technicians
worldwide can help you maximize your productivity, optimize the return on investment of
your Agilent instruments and systems, and obtain dependable measurement accuracy
for the life of those products.

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

www.agilent.com

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax
United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) 31 20 547 2111

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080) 769 0900

Latin America:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2006
Printed in USA, March 8, 2006
5989-4914EN

