
Using VISA COM I/O API in .NET

.NET and Test &
Measurement I/O
The Microsoft® .NET architecture,
with its C# and Visual Basic
programming languages and the
Microsoft Visual Studio® development
environment, has many features that
make it an excellent environment for
Test & Measurement programmers.
There is only one problem: doing
actual instrument communication.
Agilent has released the T&M Toolkit,
which provides services, applications,
and API’s to make instrument pro-
gramming natural and simple in
Visual Studio environments
(www.agilent.com/find/toolkit). While
the T&M Toolkit provides a simple,
easy-to-use programming environ-
ment from Visual Studio, savvy
Visual Studio users today can fall
back on more basic I/O tools such
as VISA COM I/O to get their T&M
programming tasks done in .NET
environments.

VISA COM I/O and .NET
The VISA COM I/O API is a program-
ming interface standardized by the
IVI Foundation for communicating
with instruments over GPIB, LAN,
USB, RS-232, or other hardware
interfaces. Agilent Technologies has
an implementation of the VISA COM
I/O standard that works with Agilent
I/O hardware as well as the computer-
standard I/O interfaces. VISA COM
I/O is an update of the older VISA C
API to work in and with Microsoft’s
COM technology.

Microsoft has integrated robust
support for COM components in
the .NET environment. The COM
interfaces tend to translate well
into .NET equivalents via automated
wrapper-generator tools that Microsoft
provides. Due to this COM support in
.NET, many programmers will find
VISA COM to be an excellent choice
for instrument communication in
.NET. This article describes how to
use Agilent’s VISA COM I/O imple-
mentation with C# and Visual Basic
(VB) examples.

Getting started
The examples in this application
note were developed using C# 2003
and Visual Basic 2003 as part of
Visual Studio 2003 Professional
Edition. We will commonly call
them C# and VB throughout this
application note. In addition,
Agilent IO Libraries Suite 14.2
was used.

First you must install Agilent VISA
COM I/O, which is installed as part
of the Agilent IO Libraries Suite.
You can download the latest
version of the IO Libraries Suite
at www.agilent.com/find/iolib. After
installing the IO Libraries Suite,
you are ready to add VISA COM I/O
to your C# Microsoft Visual Studio
project. To use VISA COM I/O, you
need to create a reference to it in
your project. To add a COM refer-
ence to your project, click the
“Solution Explorer” window in
your C# project and right-click the
“References” menu item.

The Visual Studio Add Reference
dialog
You will see the “Add Reference”
dialog. Click on the “COM” tab to
look for the VISA COM reference
you will need. Select the “VISA COM
3.0 Type Library” reference so that
you can instantiate the Agilent
VISA COM I/O implementation.
The VISA COM 3.0 Type Library
also includes the type information
for VISA COM I/O.

2

The Visual Studio environment with the Solution Explorer window

The Visual Studio Add Reference dialog

Get familiar with the Object
Browser
Now that you have added the
appropriate references into your
application, it is a good time to
look at the interfaces and classes
available to use. Press CTRL+ALT+J
or go to the View menu and select
Object Browser to open the Object
Browser. This window allows you to
examine the class hierarchies of all
the currently referenced COM and
.NET projects and libraries. Take a
look at Ivi.Visa.Interop to see
the classes and interfaces you will
be using.

3

The Visual Studio Oject Browser dialog

Instantiating and using Agilent’s
VISA COM I/O in .NET
Once you have your references to
VISA COM in your project, you are
ready to create and use VISA COM

I/O objects. Included is an example
of a simple method that creates a
resource and uses the VISA COM
488.2 Formatted I/O component to
communicate with an Agilent 54501A
Oscilloscope. It is shown using both
C# and VB.

4

C#

private void DoInstrumentIO()
{
Ivi.Visa.Interop.ResourceManagerClass rm = new Ivi.Visa.Interop.ResourceManagerClass();
Ivi.Visa.Interop.FormattedIO488Class ioobj = new Ivi.Visa.Interop.FormattedIO488Class();

try
{

object[] idnItems;

ioobj.IO = (Ivi.Visa.Interop.IMessage) rm.Open("GPIB2::10::INSTR",
Ivi.Visa.Interop.AccessMode.NO_LOCK, 0, "");

ioobj.WriteString("*IDN?", true);

idnItems = (object[]) ioobj.ReadList(Ivi.Visa.Interop.IEEEASCIIType.ASCIIType_Any, ",");

foreach(object idnItem in idnItems)
{
System.Console.Out.WriteLine("IDN Item of type " + idnItem.GetType().ToString());
System.Console.Out.WriteLine("\tValue of item is " + idnItem.ToString());

}

}
catch(Exception e)
{
System.Console.Out.WriteLine("An error occurred: " + e.Message);

}
finally
{

try{ ioobj.IO.Close(); }
catch {}

try{
System.Runtime.InteropServices.Marshal.ReleaseComObject(ioobj);
}
catch {}

try{
System.Runtime.InteropServices.Marshal.ReleaseComObject(rm);
}
catch {}

}
}

5

VB

Private Sub DoInstrumentIO()

Dim rm As Ivi.Visa.Interop.ResourceManagerClass
Dim ioobj As Ivi.Visa.Interop.FormattedIO488Class

Dim idnItem As Object
Dim idnItems As Object()

Try

rm = New Ivi.Visa.Interop.ResourceManagerClass
ioobj = New Ivi.Visa.Interop.FormattedIO488Class

ioobj.IO = rm.Open("GPIB2::10::INSTR")

ioobj.WriteString("*IDN?", True)

idnItems = ioobj.ReadList(Ivi.Visa.Interop.IEEEASCIIType.ASCIIType_Any, ",")
For Each idnItem In idnItems

MsgBox("IDN Item of type " + idnItem.GetType().ToString())
MsgBox("Value of item is " + idnItem.ToString())

Next idnItem

Catch e As Exception

MsgBox("An error occurred: " + e.Message)

Finally

Try
ioobj.IO.Close()

Catch ex As Exception
End Try

Try
System.Runtime.InteropServices.Marshal.ReleaseComObject(ioobj)

Catch ex As Exception
End Try

Try
System.Runtime.InteropServices.Marshal.ReleaseComObject(rm)

Catch ex As Exception
End Try

End Try

End Sub

Using Agilent VISA COM I/O in
Microsoft Visual Studio
The line Ivi.Visa.Interop.
ResourceManagerClass rm =

new Ivi.Visa.Interop.

ResourceManagerClass() creates
the Global Resource Manager
(GRM), which can instantiate
(create) any VISA COM resource
installed on the system. Here you
see it used to open a GPIB resource
at “GPIB2::10::INSTR”. The line
Ivi.Visa.Interop.FormattedIO48

8Class ioobj = new Ivi.Visa.

Interop.FormattedIO488Class()

creates an instance of the 488.2
Formatted I/O Class, which can
help with parsing and writing out
the data types most instruments
use. Setting the IO property of the
formatted I/O object prepares the
object for reading and writing.

You may notice a few differences
between C# and VB. These differ-
ences in large part mirror the
differences between Microsoft
Visual C++ 6 and Microsoft Visual
Basic 6. Aside from the obvious
syntactic differences there is a
capability difference in how you
can use VISA COM I/O. The optional
parameters on the Open() method
in VB are not optional in C#, and
optional parameters in general are
lost in C#.

After creating the VISA COM I/O
objects to be used, you see a call to
WriteString(). This call sends the
“*IDN?” string to the instrument.
The next line uses the ReadList()
method to parse the *IDN?” return
value. The method returns an
object, which you can cast to an
array based on the type parameter
of the ReadList() Method. With
type ASCIIType_Any, the return
value is an array of objects.

The code in the Finally block is
designed to clean up the I/O to be
sure that the I/O session is closed
immediately, all hardware I/O
resources are released, and any
valid COM objects are released. In
COM environments like Visual C++,
it was possible to destroy objects by
removing the last reference to them,
but in the .NET environment, you
must explicitly close the session.
Call the Close() method on the
Agilent VISA COM Formatted I/O
session to cause the session to
release any hardware I/O resources.

Advanced VISA COM I/O
operations in .NET
One of the design goals of
Microsoft’s COM technology was to
try to simplify threading for typical
COM programmers. They used the
concept of Apartments, where
certain threading behaviors were
guaranteed so as to limit the possible
multithreading interaction the
programmer would have to defend
against. Perversely, this made thread
programming significantly more
difficult in some cases. Microsoft’s
.NET architecture has placed the
multithreading burden back on the
programmer, and there are some
interactions that must be guarded
against when dealing with possible
multithreaded situations during
VISA COM I/O programming.

The programmer must worry about
VISA COM I/O and threading when
VISA events are used to communi-
cate with a device. This can take the
form of asynchronous I/O, handling
service requests, and other VISA
events. The following code demon-
strates handing an SRQ event on an
Agilent 34401A multimeter. Only the
VB version is included for brevity.

6

7

VB

Public Class Form1
Inherits System.Windows.Forms.Form
Implements Ivi.Visa.Interop.IEventHandler

'. . . (extra VB stuff omitted)

Dim rm As Ivi.Visa.Interop.ResourceManagerClass
Dim msg As Ivi.Visa.Interop.IMessage

Delegate Sub t_srqEvent(ByVal man As Ivi.Visa.Interop.IEventManager, _
ByVal evnt As Ivi.Visa.Interop.IEvent)

Public Sub SrqEvent(ByVal man As Ivi.Visa.Interop.IEventManager, _
ByVal evnt As Ivi.Visa.Interop.IEvent)

Try
man.Close()
evnt.Close()
System.Runtime.InteropServices.Marshal.ReleaseComObject(rm)

Catch
End Try

MsgBox("SRQ Occurred!", MsgBoxStyle.OKOnly, "SRQ Event")

End Sub

Private Sub DoAdvancedIO()

rm = New Ivi.Visa.Interop.ResourceManagerClass
msg = rm.Open("GPIB1::22::INSTR")

DoGenerateSRQ(msg)

End Sub

Public Sub DoGenerateSRQ(ByVal msg As Ivi.Visa.Interop.IMessage)

Dim eventman As Ivi.Visa.Interop.IEventManager

eventman = msg

' Reset dmm and clear DMM status registers
msg.WriteString("*RST;*CLS" & vbLf)

System.Threading.Thread.Sleep(500)

eventman.InstallHandler(Ivi.Visa.Interop.EventType.EVENT_SERVICE_REQ, Me, 1000)
eventman.EnableEvent(Ivi.Visa.Interop.EventType.EVENT_SERVICE_REQ, _
Ivi.Visa.Interop.EventMechanism.EVENT_HNDLR)

8

' Enable 'operation complete bit' to set 'standard event' bit in status byte
msg.WriteString("*ESE 1" & vbLf)

System.Threading.Thread.Sleep(500)

' Enable 'standard event' bit in status byte to pull the IEEE-488 SRQ line
msg.WriteString("*SRE 32" & vbLf)

System.Threading.Thread.Sleep(500)

' Assure synchronization
msg.WriteString("*OPC?" & vbLf)

System.Threading.Thread.Sleep(500)

' recieve *OPC? result
msg.ReadString(1000)

' set dmm to 10 volt dc range
msg.WriteString("Configure:Voltage:dc 10" & vbLf)
' set integration time to 10 Power line cycles (PLC)"
msg.WriteString("Voltage:DC:NPLC 10" & vbLf)

System.Threading.Thread.Sleep(500)

' set dmm to accept 1 trigger
msg.WriteString("Trigger:count 1" & vbLf)

System.Threading.Thread.Sleep(500)

' Place dmm in 'wait-for-trigger' state
msg.WriteString("Init" & vbLf)

System.Threading.Thread.Sleep(500)

' Set 'operation complete' bit in standard event registers when measurement is complete
msg.WriteString("*OPC" & vbLf)

End Sub

Public Sub HandleEvent(ByVal man As Ivi.Visa.Interop.IEventManager, _
ByVal evnt As Ivi.Visa.Interop.IEvent, ByVal unused As Integer) Implements _
Ivi.Visa.Interop.IEventHandler.HandleEvent

Dim args() As Object
' the threadsafe Invoke methods are the only safe thing to do in a COM callback
args = New Object(1) {man, evnt}
Me.BeginInvoke(New t_srqEvent(AddressOf Me.SrqEvent), args)

End Sub

End Class

Advanced I/O in Microsoft
Visual Studio
The DoAdvancedIO()method creates
the I/O session and passes it to the
DoGenerateSRQ() method, which
generates a service request and
enables event handling. The VB
class Form1 implements the VISA
COM I/O interface IEventHandler.
This class has one method,
HandleEvent(), which is called by
VISA COM I/O whenever an event
the client is interested in occurs.
The InstallHandler() method
call informs VISA COM to call the
form’s HandleEvent() method
implementation whenever an SRQ
event occurs. The EnableEvent()
call turns on asynchronous handler
invocation for SRQ events.

The HandleEvent() method does
not have much code in it. This is
because when you receive an event
from VISA COM I/O, we don’t know
what thread it came in on. In VB 6,
you could be certain that it was the
application’s main thread because
VB 6 used apartment threading,
guaranteeing a single-threaded envi-
ronment for COM and VB methods.
In an attempt to reduce overhead
and complex implementation
errors, Microsoft has abandoned
this strategy and it is up to the
user to recognize that this method
call occurs in an unknown thread
context. As a consequence, you
must know which .NET methods are
thread-specific and which ones are
not, and be aware of your current
threading context. Most form meth-
ods are thread-specific, so you must
be careful what methods you use.

This diagram shows the thread
interaction going on in the sample
code above (assuming the applica-
tion is multi-threaded.)

VISA COM I/O and VB threading
One of the few safe method calls in
such a context is the BeginInvoke()
method of the .NET System.
Windows.Forms.Control class. This
method accepts a .NET Delegate
class, which is a wrapper for a
method. We wrap up a method on
the form object called SrqEvent()
that we want to do useful things on
the VB.NET Form class when an
event occurs. The BeginInvoke()
method then queues up a request on
the application’s main thread to call
the delegate’s underlying method on
the form’s main thread when it is
free. As a consequence, you have
to make sure that the application’s
main thread is active and not occu-
pied in a blocking task. Also, to
receive the VISA COM event at all
your application cannot be blocking
if it is single-threaded. In a console
application, this usually means
calling Application.DoEvents()
occasionally to give queued asyn-
chronous COM events an opportunity
to execute on the application’s only
thread.

Conclusion
VISA COM I/O is a viable method
of programming instruments in
Microsoft’s VB and C# languages,
which live in the .NET execution
environment. Both tools can quickly
import the VISA COM I/O types for
use in a relatively straightforward
fashion. While the Agilent T&M
Toolkit provides the best solution
for simple .NET T&M programming
tasks, basic and even advanced I/O
operations are possible with VISA
COM I/O and the Microsoft .NET
programming languages.

9

VISA COM I/O and VB threading

VISA COM I/O

VISA COM
asynchronous
event thread

VB Form1
object main
thread

IEventManager::
HandleEvent()

HandleEvent() VISA
COM I/O callback

VISA COM
Methods,

Write(), Read(), etc.
SrqEvent() via
BeginInvoke()

VISA COM
I/O worker

thread

VB application

Agilent T&M Software and Connectivity

Agilent’s Test and Measurement software

and connectivity products and solutions

allow you to take time out of connecting

your instrument to your computer with

tools based on PC standards, so you can

focus on your tasks, not on your

connections. Visit:

www.agilent.com/find/connectivity

www.agilent.com/find/emailupdates

Get the latest information on the products

and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test

equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of

connecting and programming test systems

to help engineers design, validate and

manufacture electronic products. Agilent

offers open connectivity for a broad range

of system-ready instruments, open industry

software, PC-standard I/O and global sup-

port, which are combined to more easily

integrate test system development.

Microsoft and Visual Studio are registered

trademarks of Microsoft Corporation in the

United States and/or other countries.

Agilent
Open

Agilent Direct

Agilent Email Updates www.agilent.com

For more information on Agilent

Technologies’ products, applications

or services, please contact your local

Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) 31 20 547 2111

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080) 769 0900

Latin America:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com
Revised: 02/05/07

Product specifications and descriptions

in this document subject to change

without notice.

© Agilent Technologies, Inc. 2007

Printed in USA, March 16, 2007

5989-6338EN

Remove all doubt

Our repair and calibration services will get

your equipment back to you, performing

like new, when promised. You will get

full value out of your Agilent equipment

throughout its lifetime. Your equipment

will be serviced by Agilent-trained techni-

cians using the latest factory calibration

procedures, automated repair diagnostics

and genuine parts. You will always have the

utmost confidence in your measurements.

Agilent offers a wide range of additional

expert test and measurement services for

your equipment, including initial start-up

assistance onsite education and training,

as well as design, system integration, and

project management.

For more information on repair and

calibration services, go to

www.agilent.com/find/removealldoubt

