
Using COM-based Formatted I/O
in Microsoft® Visual Basic 6

Application Note

SCPI-based instrument communica-
tion in Visual Basic (VB) has often
been counterintuitive to programmers
familiar with the VB I/O facilities.
SCPI, the Standard Commands
for Programmable Instruments,
describes an ASCII string language
for controlling and querying instru-
ments from PC’s, usually via GPIB,
LAN, USB, or RS-232 hardware
connections. However, an ASCII
string language is not a natural fi t to
VB, where general purpose formatted
I/O components allow programmers
great fl exibility in reading, writing,
and presenting data in a variety of
formats. VB programmers need a
similar form of instrument I/O that
provides similar fl exibility.

In VB, formatted I/O is the process
of converting diverse data to a
serial (linear stream) format such
as strings of ASCII characters and
also retrieving the data from those
strings. VB provides locale-aware
formatted I/O facilities based on
the VARIANT structure, a data type
that can hold any other data type
in VB. On the other hand, the three
most common I/O library choices
for instrument communication,
VISA, SICL and NI-488, provide
no formatted I/O or only “C”-style
formatted I/O, which doesn’t work
well with VB. The VXIPlug&Play

Visual Basic prefers string concat-
enation to format strings for I/O and
display, except for the confusing
and limited “Format” function.
Additionally, Visual Basic does not
support “C”-style variable argument
lists, used by scanf and printf-style
functions.

The VISA COM 4.3.4 specifi cation
defi nes a Formatted I/O COM
component, providing the
“IFormattedIO488” interface,
designed for SCPI and IEEE
488.2-style communication. The
VXIPlug&Play Alliance, now the
IVI Foundation, is the group of I/O
vendors that developed the VISA
4.3 specifi cation, which defi ned the
entry points and behavior of a DLL,
“visa32.dll”, which exposed a “C”-
based I/O API.

4.3.4 specifi cation (now maintained
by the IVI Foundation), “VISA COM,”
provides formatted I/O facilities
through COM interfaces that work
well in Visual Basic.

A SCPI command string may be
something like:

SENS:VOLT:RANGE 5

This tells the instrument to set the
voltage range for measurements to
5 volts. Users who must communicate
with instruments through SCPI
commands and queries often have
the desire to mix fi xed strings such
as the “SENS:VOLT:RANGE ” portion
of the command to variable strings,
like the number “5.” This could be
accomplished in VISA-style formatted
I/O by executing the command:

viPrintf(vi, "SENS:VOLT:RANGE %d", voltRange);

This would substitute the value of
the voltRange variable into the string
and send it to the output stream. An
equivalent command in Visual Basic
fi le I/O is:

Print #filenum, "SENS:VOLT:RANGE"; voltRange

2

The VISA COM 4.3.4 specifi cation
describes an API based on the VISA
system that is exposed through
Microsoft’s COM technology. Since
VISA’s formatted I/O functions
rely on “C”-style variable argument
lists, which are unavailable in COM,
VISA COM does not provide VISA’s
formatted I/O. The Alliance decided
that despite this limitation and the
general problem of there being no
one formatted I/O style for all COM
compatible programming platforms,
a minimum formatted I/O library was
necessary, the “IFormattedIO488”
interface.

Why not use Visual Basic’s formatted
I/O components rather than
inventing VISA COM formatted I/O?
There are several reasons.

1. Many Visual Basic string conversion
functions use the local language
settings of the PC. For example,
German language PCs use a comma
instead of a decimal point to
delimit the integer and fractional
parts of fl oating-point numbers.
Since SCPI compliant instruments
use US English settings, using local
language settings is an undesirable
feature.

2. Visual Basic formatted I/O often
cannot tell when to stop reading
instrument data. For example,
SCPI arbitrary blocks are binary
structures that are often used by
instruments to return large, binary
arrays of data. The size of the array
is sent at the beginning of the
structure. VB formatted I/O does
not recognize SCPI arbitrary blocks,
and therefore does not know to
read the size fi rst when an arbi-
trary block is being read from the
instrument. VB is much more likely
to assume that any binary value of
10 in the block’s binary array is a
termination character and prema-
turely terminate the read.

consecutive function calls build up
a command to send to or retrieve
data from the instrument. Ideally,
this interface would be designed to
provide formatted I/O that was intui-
tive and useful in all the program-
ming platforms likely to be used with
VISA COM. The design is a compro-
mise that provides use patterns that
work well on all the most common
platforms for VISA COM: VB 6 and
Visual Studio® (C++, C#, VB).

Let’s try some sample I/O using VISA
COM in Visual Basic 6. We’ll be using
the Agilent VISA COM Libraries,
which can be downloaded from the
Agilent website, as a part of the
Agilent IO Libraries Suite, at
http://www.agilent.com/fi nd/iolib.

The fi rst task is to import VISA COM
into VB 6, which can be done under
the “Project” menu heading with the
“References” menu selection. After
installing Agilent VISA COM, you can
insert the proper VISA COM refer-
ences so that your dialog box looks
like Figure 1.

3. In general, SCPI defi nes complex
data structures that VB cannot
recognize. The binary format of the
arbitrary blocks mentioned in the
previous item are especially hard
to use in Visual Basic, since that
language does not provide easy-to-
use binary and pointer manipula-
tion operators. List formats also
present some diffi culties since
they require tokenization.

VISA COM’s IFormattedIO488
interface was designed with these
problems in mind. Its design is
aimed at the types of data and their
formats sent and received by SCPI-
based instruments as opposed to
the more general design of VISA’s
viPrintf/viScanf facilities. It was also
designed to be relatively easy to use
from the most common platforms
for VISA COM. Its syntax is most
similar to Visual Basic’s formatted
I/O facilities. Since COM method call
design does not allow for the complex
syntax of the Print# and Input#
statements, we must rely on a more
function-oriented approach, where

Figure 1.

3

You may encounter a defect in
Visual Basic 6 that will fi rst display
the VISA COM 1.0 Type Library only.
If this occurs, select the 1.0 Type
Library and save your project. Then
close and open your project again.
Go back into References and you will
see the 3.0 Type Library is selected.

“VISA COM 3.0 Type Library” is the
reference to all the API’s of VISA
COM including the Agilent imple-
mentation of the API for creating
Agilent VISA COM resources. After
you add this reference to the project,
you can look at the details of the
formatted I/O syntax in VB’s Object
Browser.

First things fi rst: let’s make sure we
have an instrument to talk to. Below
is a short subroutine that opens an
instrument session to an Agilent
34401A Digital Multimeter and gives
it to the Basic Formatted I/O object,
and then uses the Basic Formatted
I/O object to write to and read from
the instrument (Figure 2).

The output of this program in the US
English locale is similar to Figure 3.

Three different objects were created
in the above example, a resource
manager, a formatted I/O object, and
the I/O session itself. The resource
manager is a class factory that knows
how to create an object of the appro-
priate type given some confi guration
information, in this case a VISA
address, "GPIB0::12::INSTR". The
Open()method returns a new I/O
session, which we immediately pass
to the IO property of the formatted
I/O object.

Once all these objects are created,
we can begin to read and write data
through the formatted I/O object.
The WriteString method is fairly
self-explanatory; we add the vbLf VB
constant (the termination character
in SCPI, \n) which is not necessary
for VISA GPIB instrument sessions
since they have the out-of-band
END signal. The ReadList() and
ReadString() methods take back
the results from the "*IDN?" query.

The ReadList() method additionally
tokenizes the result and sets each
member to its appropriate datatype,
so a token such as “662.3” becomes a
fl oating-point VARIANT instead of a
string VARIANT, which means if you
displayed the results on a computer
with a French locale setting, the
number would appear as “662,3.”
You can customize the tokenization
with the optional second parameter,
a string of characters, each to be

Figure 2

VB 6

Private Sub BasicCommunication()

 Dim rm As New VisaComLib.ResourceManager

 Dim fmio As New VisaComLib.FormattedIO488

 Dim list(), item

 Set fmio.IO = rm.Open("GPIB0::22::INSTR")

 fmio.WriteString ("*IDN?" & vbLf)

 TextBx.Text = "The full *IDN? string=""" & _

 fmio.ReadString() & """" & vbCrLf

 fmio.WriteString ("*IDN?" & vbLf)

 list = fmio.ReadList()

 For Each item In list

 TextBx.Text = TextBx.Text & "Element Type=""" _

 & TypeName(item) & """ Element Value=""" _

 & item & """" & vbCrLf

 Next item

 fmio.IO.Close

End Sub

Figure 3

The full *IDN? string="HEWLETT-PACKARD,34401A,0,7-4-2"

Element Type="String" Element Value="HEWLETT-PACKARD"

Element Type="String" Element Value="34401A"

Element Type="Long" Element Value="0"

Element Type="String" Element Value="7-4-2"

4

treated as a list separator. The
default value of this parameter
is the comma and the semicolon
characters.

The next example (Figure 4) is of a
basic measurement:

Sample output of this subroutine in
the US English locale is:

0.00000135 C4
0.00000555

0.00000135

0.00000555

Sample output of this subroutine in
the French locale is:

0.00000135 C4
0.00000555

0,00000113

0.00000511

Notice that the second French
measurement returned a US
English-style number. This is
because the second read method
was ReadString(), which read the
data into the VARIANT as a raw
string, so VB’s locale-aware conver-
sion methods were never called. It
is obviously preferable to use the
ReadNumber() method to do the
data conversion so that the comput-
er’s locale does not adversely affect
program behavior.

This subroutine uses the optional
second parameter of the WriteX()
methods to build up a command
before sending it. This parameter
is called “FlushAndEnd” and it
tells the Basic Formatted I/O object
whether to send the data in the
buffer to the instrument and send
the END signal, telling the instru-
ment the computer is done talking.
By setting this parameter to false,
you can build up a command before
transmitting it on the last WriteX()
method. The second version builds
up an array of data and sends all of
the data at once with the WriteList
method, using the space character
as the list separator. By using the

formatted I/O object’s methods, we
avoid causing VB to do an implicit
type conversion, which is what
would happen if we did the following
command:

fmio.WriteString "MEASURE:CURRENT:AC? " & range & _

"A, " & resolution & "MA" & vbLf

Figure 4

VB 6

Private Sub BasicMeasurement()

 Dim rm As New VisaComLib.ResourceManager

 Dim fmio As New VisaComLib.FormattedIO488

 Dim range As Integer

 Dim resolution As Double, reading

 Dim query()

 Set fmio.IO = rm.Open("GPIB0::22::INSTR")

 fmio.IO.Clear

 fmio.WriteString ("*RST" & vbCrLf)

 fmio.WriteString ("*CLS" & vbCrLf)

 range = 1

 resolution = 0.001

 fmio.WriteString "MEASURE:CURRENT:AC? ", False

 fmio.WriteNumber range, flushandend:=False

 fmio.WriteString "A, ", False

 fmio.WriteNumber resolution, flushandend:=False

 fmio.WriteString "MA", True

 reading = fmio.ReadNumber()

 TextBx.Text = reading & vbCrLf

 query = Array("MEASURE:CURRENT:AC? ", range, _

 "A, ", resolution, "MA" & vbLf)

 fmio.WriteList query, ASCIIType_Any, " "

 reading = fmio.ReadString()

 TextBx.Text = TextBx.Text & reading

 fmio.IO.Close

End Sub

5

The consequence of this call is that
the data parameters are converted to
strings via the locale-aware VB code.
This would result in a bad command
being sent if the computer’s locale
were set to a language that used a
different decimal place character.

The next example uses an
Agilent 54501A Oscilloscope to
demonstrate reading binary data
with the Basic Formatted I/O object
(Figure 5).

The output of this subroutine is:

0.00000135 C4
0.00000555

The data type="Byte()"

The array length=500

This subroutine asks the oscil-
loscope to return the current
waveform as an array of 500 bytes
in the IEEE 488.2 Defi nite-Length
Binary block format. The command
ReadIEEEBlock(BinaryType_UI1)

causes the Basic Formatted I/O
object to parse the block and return
an array of bytes. This method will
even work on RS-232 and TCP/IP
socket interfaces with defi nite-length
binary blocks (you need to disable
the Termination Character before
the ReadIEEEBlock call and re-
enable the Termination Character
after). There is an equivalent
WriteIEEEBlock() that takes an array
as a parameter and converts the data
into a defi nite block to send to the
instrument.

Keep in mind the endianness (byte
order) of the instrument with which
you are communicating when using
the binary methods. It does not
matter for arrays of bytes, but for
integers, reals, and other multibyte
data types you must know the
endianness of the instrument and set
the “InstrumentBigEndian” boolean
property of the Basic Formatted I/O
object accordingly.

These examples give a brief tutorial
of the use of the Basic Formatted I/O
component provided with Agilent’s
VISA COM. These examples also
demonstrate the benefi ts of using
the formatted I/O facilities provided
with VISA COM over using the native
facilities of Microsoft Visual Basic 6.

Note: These examples were created using
Microsoft Visual Basic 6 and Agilent IO
Libraries Suite 14.2.

Figure 5

VB 6

Private Sub BinaryMeasurement()

 Dim rm As New VisaComLib.ResourceManager

 Dim fmio As New VisaComLib.FormattedIO488

 Dim range As Integer

 Dim resolution, reading As Double

 Dim query, waitLoop As Long

 Set fmio.IO = rm.Open("GPIB0::12::INSTR")

 fmio.IO.Clear

 fmio.WriteString "*RST"

 fmio.WriteString ":AUTOSCALE"

 ' Use a DoEvents Loop to wait a few seconds for the

 ' scope to catch up

 For waitLoop = 1 To 600000

 DoEvents

 Next waitLoop

 fmio.WriteString ":WAV:DATA?"

 query = fmio.ReadIEEEBlock(BinaryType_UI1)

 TextBx.Text = "The data type=""" & _

 TypeName(query) & """"" _ & vbCrLf

 TextBx.Text = TextBx.Text & "The array length=" & _

 UBound(query) - LBound(query) + 1

 fmio.IO.Close

End Sub

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confi dence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/fi nd/removealldoubt

Agilent Email Updates

www.agilent.com/fi nd/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/fi nd/agilentdirect
Quickly choose and use your test
equipment solutions with confi dence.

Agilent
Open

www.agilent.com/fi nd/open
Agilent Open simplifies the process
of connecting and programming test
systems to help engineers design,
validate and manufacture electronic
products. Agilent offers open connectivity
for a broad range of system-ready instru-
ments, open industry software, PC-stan-
dard I/O and global support, which are
combined to more easily integrate test
system development.

www.lxistandard.org
LXI is the LAN-based successor to
GPIB, providing faster, more effi cient
connectivity. Agilent is a founding
member of the LXI consortium.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
offi ce. The complete list is available at:
www.agilent.com/fi nd/contactus

Phone or Fax

Americas
Canada 877 894 4414
Latin America 305 269 7500
United States 800 829 4444

Asia Pacifi c
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 81 426 56 7832
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700
Germany 01805 24 6333*
 *0.14€/minute
Ireland 1890 924 204
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 44 (21) 8113811 (Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 7004 666666
Other European Countries:
www.agilent.com/fi nd/contactus
Revised: March 23, 2007

Microsoft and Visual Studio are U.S. registered
trademarks of Microsoft Corporation.

Product specifi cations and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2007
Printed in USA, April 18, 2007
5989-6583EN

