
Using .NET Methods to Add
Functionality to IVI-COM Drivers

Access a deeper set of instrument
functionality with minimal programming

Application Note

Introduction

Today, most test equipment is

supported with a driver, and all LXI

instruments include IVI drivers.

However, for practical reasons

most drivers cover only a subset

of an instrument’s functionality

and, in some cases, the omitted

functionality is needed to accomplish

a required measurement or set of

tests. Although it’s possible to add

functionality by modifying a driver’s

source code, this requires advanced

programming skills, and may

consume more time than a project

schedule allows.

An attractive alternative is .NET and

the .NET application programming

interface (API) that most IVI-COM

drivers provide. (Agilent provides

IVI-COM drivers for most newer

instruments). The API makes it

possible to add functionality to the

driver executable, and to create a

set of “standard” additions that will

meet your present and future needs.

Through two methods—“extension”

and “inheritance”—this approach

makes it faster and easier to access

more of an instrument’s functionality

during automated testing.

If software reuse and test-system

portability are important to your

organization, the use of drivers can be

advantageous. This is especially true

if you are migrating from GPIB to LAN

and LXI. This application note will

help you enhance these benefits by

adding functionality to existing

IVI-COM drivers through the exten-

sion and inheritance methods.

2

Looking inside IVI-COM drivers

IVI-COM drivers are based on the

Microsoft® Common Object Model

(COM) and were standardized in 2002

by the IVI Foundation. Today, many

test instruments—and all Agilent

LXI devices—have an IVI-COM driver

that can be used for programmatic

control. These drivers include three

key elements: source code, a set of

examples for a variety of application

development environments (ADEs),

and a .NET Primary Interop Assembly

(PIA) that allows test programs to

easily call IVI-COM drivers. Let’s take

a closer look at each of these.

Source code: This is the ultimate

reference for a driver’s behavior.

Vendors supply source code for three

main reasons:

• To show users how the driver

implements it functionality.

• To let users enhance the driver by

adding functionality.

• To let users fix any defects they

may discover in the driver. (Not

recommended for most users due

to the complexities involved).

The process of unraveling and

understanding source code can be

daunting. One solution is IO Monitor,

a tool included with the Agilent IO

Libraries Suite. IO Monitor lets you

observe how the IVI-COM driver

communicates with the instrument.

Example programs: These dem-

onstrate how to use and access a

driver’s functionality in a variety of

ADEs. For instance, the driver for the

Agilent 34410A digital multimeter

(DMM) includes examples for C++,

C#, Visual Basic 6.0, Visual Basic

.NET (VB.NET) and Agilent VEE. In

this application note, we focus on

C# and VB.NET as the basis for

extending drivers.

.NET PIAs: These get their name

for two reasons. First, they allow

a language to interoperate with

.NET. Second, they are “primary”

because they are provided by the

driver developer who, in theory,

knows exactly how the interoperation

should behave. PIAs are important

because a program—C#, VB.NET or

otherwise—will not automatically call

IVI-COM drivers, which are created

in C++ COM code. The PIA does the

necessary translation, providing an

easy interface to IVI-COM drivers and

making it possible to add functionality

through an easy-to-use language

such as C# or VB.NET.

Evaluating an existing driver

The decision to expand driver function-

ality depends on the limitations of the

existing driver:

• Performance: An IVI-COM driver

may not take full advantage of

instrument speed.

• Functionality: As noted earlier, few

drivers implement an instrument’s

entire feature set.

• Defects: In some cases, the fastest

way to remedy a defect is to create

your own fix.

If any of these issues are affecting

the performance or functionality

of your test system, then it will be

worthwhile to enhance the IVI-COM

driver. This can be done through

source code, but is much easier

with .NET and IVI-COM PIAs along

with the inheritance and extension

methods. A few examples will help

illustrate these techniques.

3

Preparing for the examples

As a starting point, this note assumes

that you are using Visual Studio®.

More specifically, the inheritance

example assumes that you are using

Visual Studio 2008; however, this

example can also be developed in

other versions of Visual Studio, with

slight modifications to account for

differences between versions. The

extension example requires Visual

Studio 2008 or higher because Visual

Studio 2008 was the first version to

support extension methods.

The following items must also be

installed on your PC: the IVI Shared

Components, a VISA-COM library

such as Agilent IO Libraries Suite,

and the 34410A IVI-COM instrument

driver. The IO Libraries Suite is

available for Agilent customers at

www.agilent.com/find/iolib. Agilent

instrument drivers are available at

www.agilent.com/find/drivers.

To run the example program with a

real instrument attached, you will

need a 34410 DMM with firmware

revision 2.35 or higher. If an instru-

ment is not available, you can specify

“Simulate=true” in the Initialize call.1

Both the inheritance- and extension-

method examples require some

preparation in Visual Studio. The first

step is to create a solution called

App34410 and three projects within

that solution:

• App34410: A C# console applica-

tion that will let you try out the

enhancements.

• Inherit34410: A C# class library

that extends the 34410 driver using

inheritance.

• Extend34410: A C# class library

that extends the 34410 driver using

extension methods.

After creating these projects, you will

add references to the .NET assem-

blies to be used in each project,

and make a few easy-to-implement

changes to the driver source code.

Creating the example solution and

projects

To begin, open Visual Studio 2008 and

create a new C# console application

project called App34410. This project

will hold the client code that is used

to test the enhanced driver.

• Select File > New… > Project

from the main menu (Figure 1).

This opens the New Project dialog.

• In the New Project dialog, select

Visual C# > Windows under

Project types, select Console

Application under Templates, and

type App34410 for the Name.

 ◦ Note: We recommended that

you check the Create directory

for solution box. If needed,

change the Location to a suitable

directory of your choice. Click OK.

This will create a new App34410

project and solution, display

the solution hierarchy in the

Solution Explorer pane, and

open the default class library

file Program.cs in the C# code

editor.

• Click on Program.cs in the Solution

Explorer, so the properties for

Program.cs are displayed in the

Properties pane. Change the File

Name property to App34410.cs.

In the same solution, create a

new C# class library project called

Inherit34410.

• In the Solution Explorer pane,

right click on Solution ‘App34410.’

Select Add > New Project… from

the drop down menu. This opens

the New Project dialog.

Figure 1.

1. The initialize calls are in App34410.cs in

the Main method. Please see the code list-

ings in the “Utilizing the new functionality”

section of this note.

4

• In the New Project dialog, select

Visual C# > Windows under

Project types, select Class

Library under Templates, and type

Inherit34410 for the Name. Check

the Create directory for solution

box and change the Location to a

suitable directory. Click OK. This

will create a new Inherit34410

project, add the project to the

solution hierarchy in the Solution

Explorer pane, and open the default

class library file Class1.cs in the

C# code editor.

• In the Properties pane for Class1.

cs, change the File Name property

to Inherit34410.cs.

In the same solution, create a

new C# class library project

called Extend34410 using the

same procedure that you used to

create the Inherit34410 project.

The Inherit34410 and Extend34410

projects extend the driver using

inheritance and extension methods,

respectively.

Adding the assembly references

The next step is to add references to

the Inherit34410 and Extend34410

projects. In particular, you need

references to the 34410 IVI-COM

driver and two supporting IVI libraries,

IviDriver and IviDmm.

• In the Solution Explorer pane

under the Inherit34410 project,

right click on References and the

select Add Reference… from the

dropdown menu. After a short

delay, the Add Reference dialog

will appear.

• Select the Browse tab and then

browse to the IVI Primary Interop

Assemblies directory. The default

location for this directory is C:\

Program Files\IVI Foundation\IVI\

Bin\Primary Interop Assemblies.

Select Agilent.Agilent34410.

Interop.dll and click OK. The project

should now contain a reference to

Agilent.Agilent34410.Interop.

• Repeat the previous step to add

references to Ivi.IviDriver.Interop.

dll and Ivi.IviDmm.Interop.dll to

the project.

• Add a reference to Ivi.Visa.Interop.

dll. The default location for the

VISA-COM PIA directory is C:\

Program Files\IVI Foundation\

VISA\VisaCom\Primary Interop

Assemblies. This will enable

using the driver to send Standard

Commands for Programmable

Instruments (SCPI) commands and

read query results directly from the

instrument.

• Finally, add the same three refer-

ences to the Extend34410 project.

Next, add references to the App34410

project. References to both extension

class libraries are needed.

• In the Solution Explorer pane,

under the App34410 project,

right click on References and the

select Add Reference… from the

dropdown menu. After a short

delay, the Add Reference dialog

will appear.

• Select the Projects tab, and click

on the Inherit34410 assembly, then

click OK.

• Repeat for the Extend34410 project.

The App34410 project should

now contain references to both

Inherit34410 and Extend34410.

• Add the references for

Agilent.Agilent34410.Interop.dll,

Ivi.IviDriver.Interop.dll and

Ivi.IviDmm.Interop.dll as described

above.

Revising the source code

Add the following lines to the top of

App34410.cs: (also see Figure 2)

Figure 2.

using Inherit34410;
using Extend34410;
using Ivi.Dmm.Interop;
using Ivi.Driver.Interop;
using Agilent.

Agilent34410.Interop;

5

Add the following lines to the

top of both Inherit34410.cs and

Extend34410.cs:

• Creating a series of new capabili-

ties is awkward with inheritance.

For example, if two people create

a set of extensions, they will

each create a new driver that

inherits from the original. The

two new drivers cannot be used

simultaneously. Instead, you must

either choose one or create a third

enhanced driver that combines the

two.

Extension methods also have three

distinguishing characteristics:

• Because no new class is created,

there is no need to change the

source code for instantiating

the driver or calling other driver

methods. The drawback: It may

not always be clear when you are

using methods implemented in the

original driver versus those you’ve

added.

• Extension methods must be actual

methods, meaning there are no

“extension properties.” Properties

must be implemented as “set” or

“get” methods.

• Adding a series of new capabilities

is straightforward with extension

methods. If two people create inde-

pendent sets of methods, these

can be combined as long as there

are no conflicts in their names or

signatures. If each is created as

a new assembly of methods that

extend the original driver, both

sets of extensions can be used

simultaneously by simply adding

references to both assemblies in

your .NET code.

Defi nitions of key terms

To ensure clarity in the explana-

tions and examples, here are

definitions of nine key terms from

object-oriented programming

(OOP):

• assembly: in the context of

.NET, this is a partially com-

piled code library containing

one or more modules (files)

• class: represents a program-

matic concept and encapsu-

lates the state (through vari-

ables) and behavior (through

methods) of that concept

• extension: expands the execut-

able form of a class without

modifying its underlying code

• inheritance: creates a new

class based on a previously

defined class; the new one

inherits the attributes and

behavior of the original

• instance: an individual object

that is created based on a

specific class

• instantiation: the creation of

an object (instance) based on

a class

• method: a subroutine that

performs a specific action;

associated with a specific

class or object

• object: another term for a vari-

able in a computer program;

each individual object is a

specific instantiation of a class

• property: a class value

that can be retrieved or set

(programmatically or from user

input)

using Ivi.Visa.Interop;
using Ivi.Dmm.Interop;
using Ivi.Driver.

Interop;
using Agilent.

Agilent34410.Interop;

After completing all of the steps

described above, you will have cre-

ated the infrastructure necessary to

proceed with the examples. To check

for incidental errors, you can build the

solution by selecting Build > Rebuild

Solution from the main menu.

Choosing inheritance or
extension

Before exploring the examples, it will

be worthwhile to take a closer look at

inheritance and extension. The choice

of one method versus the other

depends on a few key characteristics

of each. For example, inheritance has

three distinguishing characteristics:

• A new class is created, and it has

a new name. From this, it is always

clear that you are not using the

original driver; however, source

code written to use the original

driver must be revised to access

the inheriting driver.

• Properties can be overridden using

inheritance.

6

Applying the inheritance
method

The concept of inheritance allows you

to create a new class by “inheriting”

an existing class and then adding

new functionality. This example

extends the 34410 IVI-COM driver

by creating a new C# class called

Inherit34410, which inherits from

the root 34410 driver class, and then

adding a few new functions.

public double ReadHighResDCVolts()
{
 // Configure for DC volts
 this.MeasurementFunction =
 Agilent34410MeasurementFunctionEnum.

Agilent34410MeasurementFunctionDCVoltage;

 // Configure for maximum NPLC. Note that NPLC MAX is
not explicitly

 // supported by the driver, so driver IO is used.
 this.IO.WriteString(“SENS:VOLT:DC:NPLC MAX”, true);

 // Set trigger count to 1, sample count to 1, trig-
ger source to immediate,

 // sample timer to 0 - essentially reset the trig-
ger.

 this.MultiPoint.Configure(1, 1,
 IviDmmSampleTriggerEnum.

IviDmmSampleTriggerImmediate, 0);

 // Read a measurement. (Maximum NPLC takes a long
time & large timeout.)

 double reading = this.Read(10000);

 return reading;
}

In Inherit34410.cs, the Inherit34401

class must inherit from

Agilent34410Class, the root class

of the 34410 driver. Modify the

class statement in Inherit34410.cs

as follows:

public class Inherit34410Class : Agilent34410Class

For clarity, error handling has been

omitted in the examples that follow.

Improving performance with

inheritance

The 34410 IVI-COM driver strikes a

good balance between speed and

resolution. However, the driver does

not default to a maximum-resolution

measurement. In some cases it may

be useful to provide a method that

forces high-resolution measure-

ments. Add the following method to

Inherit34410Class in Inherit34410.cs

to get the highest possible resolution

measurement of DC voltage:

7

public double MyTriggerDelay
{
 set { this.Trigger.TriggerDelay = value * 1000; }
 get { return this.Trigger.TriggerDelay / 1000; }
}

Adding measurement-specifi c

functionality with inheritance

Users of the 34410 IVI-COM driver may

choose to build a library of functions

that extends the driver to meet

specific measurement requirements.

One highly useful addition would

be to digitize a waveform from the

34410. To do this, add the following

method to Inherit34410Class in

Inherit34410.cs:

public double[] DigitizeDCWaveform(double range, int points)
{
 // Configure for DC volts, set manual range, and fastest

resolution
 this.DCVoltage.Configure(range,
 Agilent34410ResolutionEnum.

Agilent34410ResolutionLeast);

 // Set trigger count to 1, sample count to ‘points’,
trigger source to

 // immediate, sample timer to 0
 this.MultiPoint.Configure(1, points,
 IviDmmSampleTriggerEnum.IviDmmSampleTriggerImmediate,

0);

 // Turn off autozero
 this.DCVoltage.AutoZero =
 Agilent34410AutoZeroEnum.Agilent34410AutoZeroOff;

 // Set the trigger delay to 0
 this.Trigger.TriggerDelay = 0;

 // Format the data for 32-bit binary
 this.DataFormat.DataFormat =
 Agilent34410DataFormatEnum.

Agilent34410DataFormatReal32;

 // Initialize the instrument
 this.Initiate();

 // Wait for the measurements to complete
 this.WaitForOperationComplete(points / 10);

 //Remove Data
 double[] readings = this.RemoveReadings(points);

 return readings;
}

Fixing a defect with inheritance

The 34410 IVI-COM driver is robust:

Tests by Agilent have not revealed

any defects that would cause the

driver to behave improperly (i.e., it

behaves according to reasonable

design assumptions). To simulate a

defect, pretend that the TriggerDelay

command uses the dimensions of

milliseconds rather than seconds. To

program this, modify Inherit34410Class

in Inherit34410.cs with the following

property, which performs conversion

and then sets the value correctly:

8

Applying the extension method

Extension methods allow a developer

to extend an existing class by adding

methods that appear to be methods

on the original class. No new class

is required. In this example, we will

extend the Agilent 34410 IVI-COM

driver by creating a few new extension

methods on the root Agilent 34410

driver class.

In Extend34410.cs, the class

Extend34410Class must be static.

This is a requirement for classes that

implement new extension methods.

Modify the class statement in

Extend34410.cs as follows:

public static void SetToRemote(this Agilent34410Class driver)
{
 driver.IO.WriteString(“DIAG:REM”, true);
}

public static void SetToLocal(this Agilent34410Class driver)
{
 driver.IO.WriteString(“DIAG:LOCAL”, true);
}

Adding missing functionality with

extension

This example replicates the two

methods added through inheritance,

but with two key differences in the

code. One is in the first parameter

of each method, which identifies the

extended class. The declaration of the

first parameter consists of three key

items: the keyword “this”; the type

that the method is extending (it must

be a class or structure, in this case

Agilent34410Class); and the name

(“driver”) to be used in the code for

the instance of the class. The other

key difference is in the keyword

“this,” which isn’t used in the bodies

of the methods. Instead, it is replaced

with the name of the instance of the

class being extended, in this case

“driver.”

To implement the missing instrument

commands, add the following two

methods to Extend34410Class in

Extend34410.cs:

public static class Extend34410Class

9

Improving performance with

extension

As above, this example achieves

the same basic functionality as that

added using inheritance. Notice the

differences in the code. To perform

a DC voltage measurement with the

highest possible resolution, add the

following method to Extend34410.cs:

public static double ReadHighResDCVolts(this Agilent34410Class driver)
{
 // Configure for DC volts
 driver.MeasurementFunction =
 Agilent34410MeasurementFunctionEnum.Agilent34410MeasurementFunctionDCVoltage;

 // Configure for maximum NPLC. Note that NPLC MAX is not explicitly
 // supported by the driver, so driver I/O is used.
 driver.IO.WriteString(“SENS:VOLT:DC:NPLC MAX”, true);

 // Set trigger count to 1, sample count to 1, trigger source to immediate,
 // and sample timer to 0, which, in effect, resets the trigger
 driver.MultiPoint.Configure(1, 1,
 IviDmmSampleTriggerEnum.IviDmmSampleTriggerImmediate, 0);

 // Read a measurement (maximum NPLC takes a long time & large timeout)
 double reading = driver.Read(10000);

 return reading;
}

Fixing a defect with extension

This adds the same basic functionality

as in the inheritance example. (Recall

that this is not a known defect in the

driver; it is simply used for illustration).

Here, the extension must be imple-

mented using methods because

there is a required parameter (the

trigger delay). Because of this, it

is not possible to create a prop-

erty to change the implementation.

Instead, it requires the use of two

methods, SetMyTriggerDelay()

and GetMyTriggerDelay(), that do

the same thing. Add the following

methods to Extend34410Class in

Extend34410.cs to “correct” the

trigger delay:

public static void SetMyTriggerDelay(this
Agilent34410Class driver, double value)

{
 driver.Trigger.TriggerDelay = value * 1000;
}

public static double GetMyTriggerDelay(this
Agilent34410Class driver)

{
 return driver.Trigger.TriggerDelay / 1000;
}

10

Adding measurement-specifi c

functionality with extension

This example adds the same

basic functionality added through

inheritance (once again, note the

differences in the code). Add the

following method to Extend34410.cs:

public static double[] DigitizeDCWaveform(this Agilent34410Class driver,
 double range, int points)
{
 // Configure for DC volts, set manual range and fastest resolution
 driver.DCVoltage.Configure(range,
 Agilent34410ResolutionEnum.Agilent34410ResolutionLeast);

 // Set trigger count to 1, sample count to ‘points’, trigger source to
 // immediate and sample timer to 0
 driver.MultiPoint.Configure(1, points,
 IviDmmSampleTriggerEnum.IviDmmSampleTriggerImmediate, 0);

 // Turn off autozero
 driver.DCVoltage.AutoZero =
 Agilent34410AutoZeroEnum.Agilent34410AutoZeroOff;

 // Set the trigger delay to 0
 driver.Trigger.TriggerDelay = 0;

 // Format the data for 32-bit binary
 driver.DataFormat.DataFormat =
 Agilent34410DataFormatEnum.Agilent34410DataFormatReal32;

 // Initialize the instrument
 driver.Initiate();

 // Wait for the measurments to complete
 driver.WaitForOperationComplete(points);

 //Remove data
 double[] readings = driver.RemoveReadings(points);

 return readings;
}

11

Using the new functionality

App34410.cs will use the driver

and the extensions to access the

instrument. First, add two lines to

the end of the Main method: These

will keep the content of the console

window visible until you hit a key to

indicate that you are done.

Console.WriteLine(“Press any key to end program.”);
Console.ReadKey();

Next, add the code to access the

instrument using the new driver

created through inheritance from the

Agilent34410 driver. This code goes in

the Main method:

Inherit34410Class iDriver = new Inherit34410Class();

iDriver.Initialize(“TCPIP0::A-34411A-00126.lvld.agilent.com::inst0::INSTR”,
 false, true, “”);
Console.WriteLine(“Set to local”);
iDriver.SetToLocal();
Console.WriteLine(“Set to remote”);
iDriver.SetToRemote();
Console.WriteLine(“High resolution DC Voltage Reading: “ +
 iDriver.ReadHighResDCVolts().ToString());
iDriver.MyTriggerDelay = 0.02;
Console.WriteLine(“My Trigger Delay: “ + iDriver.MyTriggerDelay.ToString());

double[] readings = iDriver.DigitizeDCWaveform(10, 50);
Console.WriteLine(“DC Waveform (points 1-10)”);
for (int idx = 0; idx <= 10; idx++)
{
 Console.WriteLine(“ “ + readings[idx].ToString());
}

iDriver.Close();

Note that the instantiated

class is Inherit34410Class, not

Agilent34410Class. Inherit34410Class

inherits the entire API of the

Agilent34410 and has the methods

and properties added above as well.

You should be able to run this code

and see output that looks something

like this:

Set to local
Set to remote
High resolution DC Voltage Reading: 1.23456+E2
My Trigger Delay: 0.019999
DC Waveform (points 1-10)
0.012345
…
0.012345

12

Add the code to access the instrument

using the new driver created by

adding extension methods to the

Agilent34410 driver. This code is also

added to the main method:

Agilent34410Class eDriver = new Agilent34410Class();

eDriver.Initialize(“TCPIP0::A-34411A-00126.lvld.agilent.com::inst0::INSTR”,
 false, true, “”);
Console.WriteLine(“Set to local”);
eDriver.SetToLocal();
Console.WriteLine(“Set to remote”);
eDriver.SetToRemote();
Console.WriteLine(“High resolution DC Voltage Reading: “ +
 eDriver.ReadHighResDCVolts().ToString());
eDriver.SetMyTriggerDelay(0.02);
Console.WriteLine(“My Trigger Delay: “ + eDriver.GetMyTriggerDelay().ToString());

double[] readings2 = eDriver.DigitizeDCWaveform(10, 50);
Console.WriteLine(“DC Waveform (points 1-10)”);
for (int idx = 0; idx <= 10; idx++)
{
 Console.WriteLine(“ “ + readings2[idx].ToString());
}

eDriver.Close();

Notice that the only differences

between the output of this code

and the previous example are in the

readings. The only difference in the

code itself, aside from a few variable

names, is in the direct instantiation of

the Agilent34410Class driver. While

this is truly the case, the extension

methods are associated with the driver

through the “using Extend34410”

declaration at the top of the file.

13

Additional considerations and
limitations

Adding functionality to a driver using

either extension or inheritance is

limited to amendments to what

the driver executable already does.

Because neither method involves

editing or rebuilding the driver source

code, it isn’t possible to change the

underlying way the driver operates.

As a result, there are some limitations

on what can be done to enhance a

driver.

One key limitation is associated with

drivers that utilize state caching

(rare with Agilent IVI-COM drivers).2

In such a case, the tracked state

is invisible and there is no way to

access or change it when adding

functionality to the driver. As a best

practice when using a driver that

supports state caching, you should

invalidate the driver’s cache at the

end of any method, whether it is

based on inheritance or extension.

Another limitation comes from error

handling. Instrument drivers perform

some level of error detection in their

properties and methods, but they

rarely query the instrument after

every I/O call to check the instrument

state. If the level of error handling

implemented in a driver is affecting

performance in your application, note

that it may not be possible to work

around this fundamental behavior by

simply amending the driver.

As a caveat, leaving driver functionality

as-is may produce the best result.

For example, it is not advised to use

inheritance or extension methods

to replace the Initialize() method

because it performs so many unseen

“housekeeping” activities. If you find

it absolutely necessary to amend the

Initialize() method, be sure to call

the driver’s Initialize() method from

the new one that is expanding its

functionality.

Conclusion

As shown throughout this note, it

is possible to add functionality to

IVI-COM instrument drivers without

resorting to advanced, time-consum-

ing programming techniques. The

inheritance and extension methods

provide attractive alternatives that

will allow you to achieve small or

moderate improvements in driver

functionality and performance, and

to work around driver defects.

2. For instruments of any complexity, state

caching is normally impractical for two

reasons: relationships between state

variables in the fi rmware are too complex

to accurately track in the driver; and some

states are dependent on instrument physics

so are impossible to track in the driver.

14

Table 5.

Publication title Pub number

Assessing the use of IVI drivers in your test system: Determining when IVI is the right choice 5990-3186EN

Building Hybrid Test Systems, Part 1: Laying the groundwork for a successful transition 5989-8175EN

Building Hybrid Test Systems, Part 2: Ensuring success in two common scenarios 5989-8176EN

Using Linux in Your Test Systems: Linux Basics 5989-6715EN

Using Linux to Control LXI Instruments Through VXI-11 5989-6716EN

Using Linux to Control LXI Instruments Through TCP 5989-6717EN

Using Linux to Control USB Instruments 5989-6718EN

Tips for Optimizing Test System Performance in Linux Soft Real-Time Applications 5989-6719EN

LXI: Going Beyond GPIB, PXI and VXI, Overcoming the major challenges of testing 5989-4371EN

Related Agilent Literature

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the

products and applications you select.

www.lxistandard.org

LAN eXtensions for Instruments puts

the power of Ethernet and the Web

inside your test systems. Agilent

is a founding member of the LXI

consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent’s

measurement expertise and product

breadth, combined with channel

partner convenience.

For more information on Agilent Tech-
nologies’ products, applications or services,
please contact your local Agilent office. The

complete list is available at:

www.agilent.com/fi nd/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacifi c
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries:
www.agilent.com/fi nd/contactus
Revised: January 6, 2012

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2012
Published in USA, March 1, 2012
5990-3661EN

www.agilent.com
www.agilent.com/find/open

Agilent Advantage Services is committed

to your success throughout your equip-

ment’s lifetime. To keep you competitive,

we continually invest in tools and

processes that speed up calibration and

repair and reduce your cost of ownership.

You can also use Infoline Web Services

to manage equipment and services more

effectively. By sharing our measurement

and service expertise, we help you create

the products that change our world.

www.agilent.com/quality

www.agilent.com/find/advantageservices

Quality Management SystemQuality Management Sys
ISO 9001:2008

Agilent Electronic Measurement Group

DEKRA Certified

Microsoft is a U.S. registered trademark of

Microsoft Corporation.

Visual Studio is a registered trademark of

Microsoft Corporation in the United States

and/or other countries.

