
Getting Test Programs Up and
Running Quickly with Driver Tracing
and I/O Monitoring

Application Note

Examining and troubleshooting I/O activity in IVI-COM drivers

The decision to use IVI-COM drivers

may be influenced by a variety of fac-

tors. These drivers are easy to use in

.NET languages, Visual Basic 6, and

C++, and the integrated IntelliSense

functionality provides built-in help

for developers. IVI-COM drivers also

enable software reuse and enhance

test system portability. Although

some IVI-COM drivers don’t access

all of an instrument’s functionality,

they are easy to extend with .NET

languages (for more on this, please

refer to the Agilent application

note, Using .NET to extend IVI-COM

Instrument Drivers, publication num-

ber 5990-3661EN).

These are compelling advantages if

you are confident in the implementa-

tion and performance of the driver.

In the search for that confidence,

test engineers face a consistent

problem: determining how the driver

communicates with the instrument.

Which Standard Commands for

Programmable Instruments (SCPI)

commands are used? Does the driver

check the instrument for errors? How

does it handle asynchronous com-

munication? What happens inside

the driver when there are errors or

unexpected results? While many

engineers look to driver source code

for answers, the fundamental ques-

tion is, what does the driver actually

do?

To create a window into driver

operation, Agilent provides two highly

useful tools: driver tracing and IO

Monitor. Driver tracing writes a

detailed history of the specific calls

made to the driver for later analysis.

IO Monitor provides a real-time

window into the calls made to Agilent

VISA.

Driver tracing is built into nearly

all Agilent IVI-COM drivers. When

driver tracing is enabled, the driver

writes an XML file that lists the driver

methods and properties called by the

test program, along with parameter

values. The XML file can be easily

viewed in your browser of choice

after the test program has completed.

IO Monitor is an application that

displays a system-wide, real-time list

of input/output (I/O) calls to Agilent

VISA, VISA-COM and SICL I/O librar-

ies. It is included in the Agilent IO

Libraries Suite.

These tools help test engineers in at

least three ways:

• Learn more about how to program

an instrument.

• Verify that the program is calling a

driver as expected.

• Troubleshoot when the program is

not working as expected.

The result is an enhanced ability to

get test programs up and running –

and producing the expected results –

in less time. On the following pages,

this note helps you create an example

program and then shows you how to

use driver tracing and IO Monitor to

examine, verify and troubleshoot I/O

activity in IVI-COM drivers.

1. And many IVI-COM drivers from other

vendors.

2

Essential Background

In building a test program, you need

to assemble the correct set of driv-

ers, which includes all instrument

drivers as well as any required I/O

drivers. For this application note, the

examples use Agilent’s VISA or VISA-

COM I/O libraries, which provide the

I/O drivers to manage the I/O device

that connects the computer/operat-

ing system to the instrument. The

examples also use the IVI-COM driver

for instrument control.

Agilent’s IO Libraries Suite provides

the VISA and VISA-COM I/O libraries

as well as several utilities, including

IO Monitor, that are used later in this

note. The driver-tracing capability is

part of most Agilent IVI-COM drivers.

How Drivers
Communicate

Agilent’s IVI-COM drivers use

either VISA or VISA-COM to com-

municate with instruments. VISA and

VISA-COM are used to send SCPI

commands to the instrument and

read back the instrument’s results

independent of the interface—GPIB,

LAN, USB and so on. The driver is

notified of asynchronous I/O events

by VISA or VISA-COM. With all of this

activity, it’s clear that visibility into

VISA and VISA-COM calls is essential

to understanding how a driver does

its job.

It’s worth noting that VISA and VISA-

COM are industry standards that were

originally created by the VXIplug&play

Systems Alliance and are now main-

tained by the IVI Foundation. Several

test and measurement vendors

provide implementations of VISA and

VISA-COM. Agilent’s implementation,

which is referred to as Agilent VISA

or Agilent VISA-COM in this note, can

be used by installing the Agilent IO

Libraries Suite.

1. Visual Studio 2008 was used to develop the example code in this note. Visual Studio is Microsoft’s programming suite. If you buy a Microsoft

compiler (C#, Visual Basic, etc.), the compiler is delivered with Visual Studio.

2. Agilent IO Libraries Suite installs the VISA-COM library and IVI Shared Components for you. The Agilent IO Libraries Suite is available at

www.agilent.com/find/iolib

3. While you can use the 34410 IVI-COM driver in simulation mode, the driver trace information is less meaningful when simulating, and IO Monitor

information is not meaningful at all.

Preparing the Example
Program

Throughout the rest of this note, we

will examine the information that

is delivered by driver tracing and IO

Monitor in the context of a short

example. Our starting point is a short

program that first makes a connection

to the instrument and then closes

the connection. We will then extend

the example with additional driver

features and examine them through

both driver traces and IO Monitor.

To follow along with the example

programs, you’ll need the following

on your PC: Microsoft® Visual Studio®

2003, 2005, or 2008; the IVI Shared

Components; a VISA-COM library

such as Agilent IO Libraries Suite;

and the Agilent 34410 IVI-COM

instrument driver, v. 1.0.19.0.1,2 To get

a firsthand look at the I/O activity,

we recommend that you run the

examples with an Agilent 34410

instrument connected.3

To get things started, the example

requires some upfront preparation of

Visual Studio. The required steps are

detailed in the following sections.

3

Creating the example solution and projects

To begin, open Visual Studio and create a new C# console application project

called Trace34410. This project will hold the client code that is used to test the

extended driver:

• Select File | New… | Project from the main menu. This opens the New

Project dialog.

• In the New Project dialog, select Visual C# | Windows under Project types,

select Console Application under Templates, and type “Trace34410” for the

Name. We recommend that you check the Create directory for solution box.

If needed, change the Location to a suitable directory for your PC. Click OK.

This will create a new Trace34410 project and solution, display the solution

hierarchy in the Solution Explorer pane, and open the default class library file

Program.cs in the C# code editor.

• Click on Program.cs in the Solution Explorer. The properties for Program.cs

will be displayed in the Properties pane. Change the File Name property to

“Trace34410.cs”.

Adding assembly references

Next, add references to the App34410 project. References to both extension

class libraries are needed.

• In the Solution Explorer pane under the App34410 project, right click on

References and select Add Reference… from the dropdown menu. After a

short delay, the Add Reference dialog will appear.

• Select the COM tab and add the references for IVI Agilent34410 1.0 Type

Library. References to the dependent IviDriver and IviDmm type libraries will

be added automatically.

Use the driver’s namespace

Add the following line to the top of Trace34410.cs:

 using Agilent.Agilent34410.Interop;

After completing these steps, you will have created the infrastructure necessary

for the examples. To check for incidental errors, you can build the solution by

selecting Build | Rebuild Solution from the main menu. If your program does

not build, check your syntax and verify that you performed all of the above steps

before proceeding.

4

Using Driver Traces

Most Agilent IVI-COM drivers include the ability to write an XML file of driver-

trace messages. The trace includes messages that describe calls to driver func-

tions, and also includes calls that the driver makes to the underlying I/O library,

which is either VISA or VISA-COM.

Configuring the driver for tracing

Driver tracing is started when the user calls the driver’s Initialize() method with

tracing specified in the Option String. To see how this works, add the following

lines to the Main method in Trace34410.cs:

 Agilent34410 driver = new Agilent34410Class();

 driver.Initialize(“TCPIP0::156.140.113.215::inst0:
:INSTR”,true, true,

 @”DriverSetup=Trace=True,TraceName=C:TEMP\34410Tra
ce.xml”);driver.Close();

 Console.WriteLine(“Press any key to end pro-
gram.”); Console.ReadKey();

First, replace the resource descriptor in the sample code (“TCPIP0::156.140.113.

215::inst0::INSTR”) with the resource descriptor of your 34410 instrument. When

the driver’s initialize method is called, the OptionString parameter includes

“DriverSetup=”.1 What follows is a series of name/value pairs that define

driver-specific configuration settings. Setting “Trace=True” turns on tracing for

the driver session, and setting “Tracename= C:\TEMP\34410Trace.xml” will

configure tracing to write messages to the specified file.2

Creating the trace file

To create the trace file, build (debug or release) and run the program. Running it

in the debugger will work well.

1. If you are using simulation for this example, use the following value for the OptionString param-

eter: “Simulation=True, DriverSetup=Trace=True,TraceName=C:\TEMP\34410Trace.xml”.

2. C:\TEMP exists on most Windows PCs. If it doesn’t exist on your PC, either create it or modify

the code to use the directory of your choice. Note that if you omit the “Tracename= C:\

TEMP\34410Trace.xml” in the option string, trace data will be written to a file in the current direc-

tory. The default name for trace files created without the Tracename option includes the current

date and time, and each time the program is executed, a new file is created.

5

Figure 1. The trace output file provides a numbered sequence of driver I/O calls.

Reviewing the trace file

To review the trace file, open your browser and type the following URL:

 File:\\C:\Temp\34410Trace.xml

The trace file references a formatting file, trace.xslt, that is used to format the

output. You should see a browser screen that resembles Figure 1. In general,

each numbered item in the list is a call to a driver method or property. If the

method or property calls an I/O method, that method call is indented under the

calling-driver method or property. The first line is the exception: Because tracing

was not turned on when Initialize() was called, the Initialize function is not

listed. Here is a line-by-line description of the trace file shown in Figure 1:

1. Initialize() was called with the IdQuery parameter = “true”. As a result,

Initialize() called the I/O method InstrPrintf() to send the SCPI command

“*IDN?” to the instrument. In response to this command, the instrument

returned an identification string, which is shown as the [Out] parameter

bstrResult.

2. Initialize() was called with the Reset parameter = “true”. As a result,

Initialize() called another driver method, Reset(), which in turn called the I/O

method InstrQuery() to send the SCPI command “*RST;*OPC?” to the instru-

ment. This command initiated an instrument reset (“*RST”) and waited for the

operation to complete (“*OPC?”) before returning.

3. Close() was called by the Trace34410 program.

6

Exploring a complex example

The Agilent 34410 IVI-COM driver generally strikes a good balance between

speed and resolution in instrument operations. For example, suppose a client

program needs a DC volts measurement with the highest possible resolution.

Sending the SCPI string "SENS:VOLT:DC:NPLC MAX" to the 34410 configures it

to take a maximum-resolution measurement. Because this measurement takes

about 3 to 3.5 seconds, the timeout must also be increased: 5000 ms is a safe

amount of time to wait.

The driver has methods to configure and read a measurement. You might

reasonably wonder if these methods configure and read a maximum resolution

measurement—and the trace messages will answer the question. Here’s how:

Add the following lines to the Trace34410 program between the Initialize()

method and the Close() method.

 driver.Voltage.DCVoltage.Configure(10,
Agilent34410ResolutionEnum.
Agilent34410ResolutionLeast);

 driver.Trigger.SampleCount = 1;
 driver.Trigger.TriggerSource =
 Agilent34410TriggerSourceEnum.
Agilent34410TriggerSourceImmediate;

 driver.System.TimeoutMilliseconds = 5000;
 double[] reading = driver.Measurement.Read();

The Configure() method is used because it can set the DMM to take a DC volts

measurement. The next parameter is the range and the last is resolution. It’s

logical to wonder which number to use to set the DC volts resolution to its

maximum; however, there is no way to know, given the design of the driver.

Before you run the program, delete the existing trace file, or the new program

will append to the old file. Once you have built and run the program, a quick look

at the trace will verify that, as suspected, “SENS:VOLT:DC:NPLC MAX” is never

sent to the instrument by any of the properties or methods in the line you added.

7

Line-by-line description

Here is a line-by-line description of

the trace file shown in Figure 2.

1. Initialize() was called with the

IdQuery parameter = “true”. As

a result, Initialize() called the I/O

method InstrPrintf() to send the

SCPI command “*IDN?” to the

instrument. In response to this

command, the instrument returned

an identification string, which is

shown as the [Out] parameter

bstrResult.

2. Initialize() was called with the

Reset parameter = “true”. As a

result, Initialize() called another

driver method, Reset(), which

in turn called the I/O method

InstrQuery() to send the SCPI

command “*RST;*OPC?” to the

instrument. This command initiated

an instrument reset (“*RST”) and

waited for the operation to com-

plete (“*OPC?”) before returning.

3. The driver contains an implementa-

tion of the IAgilent34410Voltage

interface. The “Voltage” in driver.

Voltage.DCVoltage.Configure()

returns a reference to this interface.

“Voltage” in this context is called

an “interface reference property.”

Interface reference properties

are used to create a hierarchy of

driver functionality for navigating

the driver in Visual Studio using

IntelliSense.

4. The Voltage interface contains

an implementation of the

IAgilent34410DCVoltage interface.

The “DCVoltage” in driver.Voltage.

DCVoltage.Configure() returns a

reference to this interface.

Figure 2. The trace output file for a 34410 measurement.

8

Line-by-line description,
continued

5. Finally, the DCVoltage interface

defines the Configure() method

that we are calling to configure the

34410 for a DC volts measurement.

6. The driver contains an implementa-

tion of the IAgilent34410System

interface. The “System” in

driver.System.TimeoutMilliseconds

returns a reference to this interface.

7. The System interface defines the

TimeoutMilliseconds property.

The program calls the property’s

put_TimeoutMilliseconds method

and sets the timeout to 5000 mil-

liseconds. This ensures that the

driver has allowed enough time for

a maximum-resolution measure-

ment, if that’s what the driver does

when running our sample code.

8. The driver contains an implementa-

tion of the IAgilent34410Trigger

interface. The “Trigger” in driver.

Trigger.TriggerSource returns a

reference to this interface.

9. The Trigger interface defines

the TriggerSource property. The

program calls the property’s

put_TriggerSource method to set

the trigger source to “Immediate”.

This ensures that the measurement

will be taken as soon as the driver

starts the Read operation.

10. The driver contains an implemen-

tation of the IAgilent34410System

interface. The “System” in

driver.System.TimeoutMilliseconds

returns a reference to this interface.

11. The System interface defines

the TimeoutMilliseconds property.

The program calls the property’s

put_TimeoutMilliseconds method

to set the timeout to 5000 ms. Once

the driver starts the read, the VISA

will wait 5000 ms; if a result hasn’t

been received, it will return control

to the test program. This ensures

that errors don’t make the program

wait indefinitely.

12. The driver contains an

implementation of the

IAgilent34410Measurement

interface. The “Measurement” in

driver.Measurement.Read() returns

a reference to this interface.

13. The Measurement interface

defines the Read() method. The

program calls the read method and

queries the DMM for the measure-

ment. (Note that the trace does

not show numeric array results to

instrument queries to avoid format-

ting and performance issues.)

14. Close() was called by the

Trace34410 program.

Understanding the limitations
of driver tracing

For the examples shown above,

analyzing driver traces can be use-

ful. However, this method has an

important limitation: Only methods

and properties that are implemented

as part of the driver will write mes-

sages to the trace file. This can

be illustrated by using the driver’s

IO passthrough feature to send

“SENS:VOLT:DC:NPLC MAX” to the

instrument. Add the following line

after the Configure() method in the

example above:

 driver.System.IO.WriteS
tring(“SENS:VOLT:DC:NP
LC MAX”, true);

After you build and run the program,

note that the NPLC MAX command

doesn’t show up in the trace. What

you will see is a message from

IAgilent34410System.get_IO(),

which corresponds to the “IO” in

driver.IO.WriteString. In this case,

“IO” refers to the IVI Foundation’s

VISA-COM Formatted IO class. This

Formatted IO class implements the

WriteString method. Because the

Formatted IO class was developed

by the IVI Foundation rather than the

driver vendor, you won’t see a trace

message from WriteString, and hence

“SENS:VOLT:DC:NPLC MAX” doesn’t

appear in the trace.

9

Using IO Monitor

Both Agilent VISA and Agilent VISA-

COM are capable of sending “trace”

messages to IO Monitor, which is

also installed with Agilent IO Libraries

Suite. IO Monitor is an application

that displays these messages in a

sequence that corresponds to the

time they were generated.

Running IO Monitor

IO Monitor can be run from the start
menu: Select Agilent IO Libraries
Suite | Utilities | IO Monitor. Once
you have started IO Monitor, select
Options… from the toolbar. In the sec-
tion titled Monitor/Display Messages
From Sources, make sure that both
the Monitor and Display check boxes
for Agilent VISA are checked, then
select OK. To keep the display as
uncluttered as possible, make sure
that no other boxes are checked. This
configures IO Monitor to display only
Agilent VISA messages.

IO Monitor capture

To capture IO trace messages, select
Start Capturing Messages from
the IO Monitor toolbar. Now run the
sample program again. Agilent VISA
will write messages to IO Monitor
as it communicates with the 34410.
After the program stops, note that
IO Monitor displays a very complete
picture of the VISA I/O to and from
the instrument (Figure 3).

Reading an IO Monitor trace

As shown in Figure 3, the top pane
in the IO Monitor window lists trace
messages in a timestamp sequence.
Each message represents a call to a
VISA function. The Method call shows
the VISA function that was called
and the IO Data column shows the
content of the first buffer parameter
of the call. For the 34410 driver, SCPI
command strings are normally shown
as buffers for viWrite method calls and
string-return values (which are often
numbers represented as strings) from

the instrument are normally shown as

buffers for viRead method calls.

Figure 3. IO Monitor provides a detailed display of instrument communication.

10

Trace message features

A quick review of the trace messages in Figure 3 reveals several interesting

features:

• There is abundant I/O activity in the Initialize() call, which generated all of

the trace messages from the beginning of the list to the message with the

timestamp 13:14:25.782. This can be verified by debugging stepwise through

the program (see next section).

• The SENS:VOLT:DC:NPLC MAX command is visible in the IO Monitor window

(timestamp = 13:14:25.802).

• There is not an instrument SCPI command for setting the measurement

timeout. In fact, the timeout is a VISA property. That is, VISA I/O will time

out while waiting for a measurement response if the measurement takes too

long. The VISA timeout is set by a VISA viSetAttribute() call (timestamp =

13:14:25.797).

Debugging with IO Monitor

Stepwise debugging can be used to correlate driver methods and properties

from VISA I/O to the instrument. Start by setting a breakpoint on the first line

of the client program. In the editor, click on the far left column next to the fol-

lowing line:

 Agilent34410 driver = new Agilent34410Class();

Start IO Monitor and capture the message stream. Next, run the program with

the debugger. Step through the first two lines – through the Initialize() call –

and then look at the IO Monitor window. It should show only the lines from the

Initialize() call. Step through the next line: IO Monitor should include an addi-

tional line showing that “CONF 10,MAX\n” was sent to the instrument. Keep

stepping through the lines in the program, referring to IO Monitor between each

line to see which lines have been added. Using this technique, it is relatively

easy to see which commands are being sent to the instrument by each call the

program makes to the driver.

IO monitor and
general purpose I/O

IO Monitor is good for more than

just the tracking of driver execution.

In short, it’s a general purpose I/O

monitoring tool for any of the Agilent

IO APIs (SICL, VISA and VISA-COM).

Many developers prefer to program

with SCPI directly, and test-system

programs that use SICL, VISA or

VISA-COM to send SCPI commands

directly to an instrument can use IO

Monitor to trace I/O calls.

To assist with troubleshooting, IO

Monitor generates trace “message

files.” These are XML files that IO

Monitor can write either dynamically

as messages are being received or

after an entire trace has been

received. One caveat: Message files

are not viewer friendly, but can be

read into the IO Monitor Log Viewer

application. The easiest way to com-

pare two IO Monitor traces is to save

them to message files and open each

one in IO Monitor Log Viewer.

Finally, certain options in IO Monitor

allow you to adapt it to a variety of

I/O profiles. For example, memory use

can be controlled by limiting the size

of buffers (usually strings or arrays)

returned by an instrument to a test

program. On the other hand, if it is

important to see the entire content

of large strings or arrays, the buffer

size can be increased. For programs

with heavy I/O traffic, monitoring may

affect execution speed. When per-

formance is an issue, the IO Monitor

display, which normally displays

each trace message as it is acquired,

can be configured to display the

messages one window at a time to

provide an incremental improvement

in speed.

11

Comparing Driver Tracing with I/O Monitor

Driver tracing and IO Monitor tracing are distinguished primarily by the fact than

one is implemented in drivers and oriented towards driver operation, while the

other is implemented in the Agilent IO Libraries Suite and is oriented toward

I/O. Here is a summary of key differences, and some suggestions for choosing

one or the other.

• Name visibility: Driver tracing shows the names of driver methods and prop-

erties; IO Monitor does not. Use driver tracing when it’s important to see the

driver calls that are being made.

• Call visibility: Driver tracing shows all calls to the driver, even those that

don’t perform I/O. IO Monitor shows all I/O activity from (generated by)

the driver. Use IO Monitor if you need to see all of the I/O generated by a

program, including calls made through the Formatted IO class (or any other

means that bypasses the driver’s implementation, as delivered by the vendor).

• Viewing multiple drivers: Driver trace files show activity from one instance

of a driver at a time. If you want to see how two drivers interact, or even

two instances of the same driver, you must create two driver-trace files with

different names and manually compare them. IO Monitor shows all VISA I/O

activity on a PC. This may include activity from multiple drivers and multiple

test programs. While this makes it possible to get a bigger picture of how

multiple instruments interact in a test program, it may also make it difficult to

pick out what a specific instrument is doing.

• Timestamp resolution: Driver-tracing timestamps are stored in seconds;

IO Monitor timestamps are in milliseconds. If you need more precise time-

stamps, use IO Monitor. If you need to manually correlate information from

driver traces and IO Monitor, remember to account for this difference.

• Performance: The use of either driver tracing or IO Monitor may affect perfor-

mance, especially for programs that do a lot of I/O very quickly. Driver tracing

is typically faster than IO Monitor, but neither should be turned on for routine

production use.

• Dynamic Control: Some recent IVI-COM drivers provide a System.Trace

property that allows the test program to turn tracing on or off. This can be

especially useful if you want to monitor only specific sections of your code.

Conclusion

In the process of getting test programs up and running in less time, driver tracing

and IO Monitor each provide useful advantages. Fortunately, it isn’t an either/or

choice: You can use them together to maximize your understanding of how IVI-

COM drivers communicate with the instruments in your system.

Being able to see what the driver actually does as it communicates with an

instrument will go a long way towards building your confidence in IVI-COM driv-

ers – and helping you maximize the benefits they offer. Using driver tracing and

IO Monitor, you can quickly answer the questions posed at the beginning of this

note: which SCPI commands are used by a driver, whether the driver checks the

instrument for errors, and how the driver handles asynchronous communication.

Publication title Pub number

Using .NET Methods to Add Functionality to IVI-COM Drivers 5990-3661EN

Assessing the Use of IVI drivers in Your Test System:

Determining when IVI is the right choice
5990-3186EN

Building Hybrid Test Systems, Part 1: Laying the groundwork

for a successful transition
5989-8175EN

Building Hybrid Test Systems, Part 2: Ensuring success in

two common scenarios
5989-8176EN

Using Linux in Your Test Systems: Linux Basics 5989-6715EN

Using Linux to Control LXI Instruments Through VXI-11 5989-6716EN

Using Linux to Control LXI Instruments Through TCP 5989-6717EN

Using Linux to Control USB Instruments 5989-6718EN

Tips for Optimizing Test System Performance in Linux Soft

Real-Time Applications
5989-6719EN

LXI: Going Beyond GPIB, PXI and VXI Overcoming the major

challenges of testing
5989-4371EN

Remove all doubt

Our repair and calibration services will get your equipment back to you,

performing like new, when promised. You will get full value out of your

Agilent equipment through-out its lifetime. Your equipment will be

serviced by Agilent-trained technicians using the latest factory calibration

procedures, automated repair diagnostics and genuine parts. You will always

have the utmost confidence in your measurements. For information regarding

self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement

services for your equipment, including initial start-up assistance, onsite

education and training, as well as design, system integration, and project

management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

For more information on Agilent
Technologies’ products, applications
or services, please contact your local
Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 01 36027 71571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 07031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: March 24, 2009

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2009
Printed in USA, May 5, 2009
5990-4003EN

www.agilent.com
www.agilent.com/find/open

Microsoft is a U.S. registered trademark Microsoft Corporation.

Visual Studio is a registered trademark of Microsoft Corporation in the United States

and/or other countries.

