
Creating Hardware Handler
in C/C++ for Agilent
TestExec SL

Application Note

Overview on
Hardware Handlers

A hardware handler lies in between

the TestExec SL and the driver for

a hardware module. The purpose

of having a hardware handler is to

enhance TestExec SL’s ability to

control devices by communicating

directly with the instrument’s driver.

In other words, the handler contains

codes that implement the functions

called by TestExec SL when it interacts

with the hardware. Hardware handlers

can be written in C/C++ or any of the

managed (based on Microsoft’s .NET

software technology) programming

languages, including C# and VB.NET.

There are distinctive advantages

of using the hardware handler.

Firstly, hardware handler offers

ease of maintenance in terms of

code development. Since function

calls are generally the same across

instruments, it is easier to reuse

actions for different types of test

systems. Subsequently, tests or

testplans built from the same actions

can also be reused. As a minimum

prerequisite, all hardware handlers

require general purpose functions that

are compatible with various kinds of

hardware modules:

• Open (initialize) a module.

• Close a module.

• Reset a module to a default state

 (which can be different from its

 initialized state).

• Declare any parameters needed

 to create a unique instance of the

 handler, such as which instrument

 identifier to use.

The second advantage lies in value-

added features that a hardware

handler provides. Instead of only

utilizing the function calls for a

particular instrument, hardware

handlers allow you to perform these

activities:

• Insertion of error handling – in the

 events of failure such as instrument

 fails to initiate, an exception can be

 raised to alert the user.

• Support for multiple instruments

 – hardware handlers can be written

 as a wrapper to support multiple

 instruments, such as different

 models of digital multi-meters. This

 method eliminates the need to

 create different handlers for each

 and every instrument.

• Check for compliance – Additional

 checking can be appended into the

 hardware handler to check whether

 the input data adheres to the data

 types required.

The steps in creating a hardware handler are:

1) Setting up environment for a hardware handler

2) Creating implementation file

3) Writing the hardware handler

4) Building the project

2

Step 1: Setting up
Environment for a
Hardware Handler

A prerequisite to creating hardware

handler is to first setup the path in

your development environment. This

example uses the Microsoft Visual

Studio C++ 6.0 as the development

environment, thus if you are using

another C/C++ development

environment, the details will vary but

the concepts remain similar.

There are two paths that you must

set, and these are the paths to access

library files and include files. Go to

Tools > Options in the Visual C++

menu bar. In the ‘Options’ box,

choose the ‘Directories’ tab and

specify the paths.

Depending on where the installation

of TestExec resides in your system,

your paths may vary from the example

shown here.

Figure 1. Setting path for library files.

Figure 2. Setting path for include files.

Note: If you are using the TS-5400 library, you have to set the paths for both the library and

 include files as well.

Note: If you are using the IVI-COM driver, you have to set the paths for both the library

 and include files as well.

3

Step 2: Creating
Implementation File

To begin creating a hardware handler,

you must first create a new dynamic

link library (DLL) project in the Visual

C++ by selecting ‘Win 32 Dynamic

Link Library’. A DLL is a module that

contains functions and data that can

be used by another module which

maybe an application or another DLL.

The distinctive benefit of using DLLs

is the availability of shared libraries

such as modularity. Modularity allows

changes to be made to code and

data in a single self-contained DLL

shared by several applications without

the need to change the individual

applications. In addition, modularity

uses generic interfaces for plug-ins.

A single interface allows both old

and new modules to be integrated

seamlessly at run-time into existing

applications, without the need to

modify the application itself.

Selecting an empty DLL project will

result in Win 32 creating a new

skeleton project without any files

added into the project.

Once an empty project is created, you

need to specify the project settings.

First, go to the ‘General’ tab and

select ‘Non Using MFC’ since the

Microsoft Foundation Classes (MFC)

functionality is not used. Next, go to

the ‘Link’ tab and specify ‘utacore.

lib’ in the ‘Options/library modules’

column. The ‘utacore.lib’ must

be linked to utilize the TestExec’s

functions. The next step is to create

the implementation file as shown in

Figure 4. Here, you have the option of

selecting the file type.

Figure 3. Create a DLL project

Figure 4. Create Implementation File

4

Step 3: Writing the
Hardware Handler

This example outlines sample codes

showing how an action written in C

can communicate with the Agilent

34411 via the IVI-COM driver. Other

TestExec SL’s functionalities can also

be added accordingly.

This example assumes that you have

basic knowledge on TestExec SL’s

hardware API and functions. API

functions or data types with ‘UTA’ in

their names are based on Agilent’s

TestCore services which provide an

open, standardized framework for

creating or modifying test systems.

Thus, ‘UTA’ or ‘Uta’ symbolizes

the prefix that indicates a TestExec

SL’s function. You must also get

familiarized with the TestExec

SL’s macros such as ‘UTADLL’ or

‘UTAAPI’. These macros enhance

code portability across operating

platforms. ‘UTAAPI’ is used when

declaring the function’s prototype in

a header file (.h) whereas ‘UTADLL’ is

used when calling the function in an

implementation file (.c or .cpp).

Initialization of Functions

Firstly, you should add the various

header files for TestExec SL’s

interface declarations, the IVI-COM

driver and various definitions used in

writing the handler.

Here are examples of standard

handler header files:

#include “stduta.h”
#include “common.h”
#include “HwhUtil.h”
#include “Dmm.h”

Here are examples of IVI-COM files:

#import “IviDriverTypeLib.dll”
#import “IviDmmTypeLib.dll”
#import “GlobMgr.dll”
#import “Ag34410.dll”

Writing Functions

The first section will cover the 4 mandatory functions which are Init (), Reset (),

Declare Parms () and Reset (). These functions are required in every hardware

handler. Subsequently, there will be two examples on controlling the DMM -

measure DC voltage and configure the DMM.

A. Init ()

This function initializes a hardware module and is compulsory in all hardware

handlers. When a testplan is executed, TestExec SL calls this function to

initialize each instance of a hardware module that uses this hardware handler.

An error handling is added to alert the user if the instrument fails to initialize as

shown in the example here.

LPVOID UTADLL Init (HUTAHWMOD hModule, HUTAPB hParmBlock)
{
 IUtaString szVISAaddr (hParmBlock, RESOURCE_STRING);

 INSTSTATE* userHandle;
 userHandle = new(INSTSTATE);

 if (!userHandle){
 raise_exception (UTA_INST_ERROR_MESSAGE, “InstOpen”, “Could
 not allocate memory for INSTSTATE”, “”);
 return NULL;
 }

 userHandle->vi = (ViSession) 0;
 userHandle->ulHandlerID = NEWDMM_ID;
 userHandle->pInstState = (C34411*)new(C34411);

 if (!(userHandle->pInstState)){
 raise_exception (UTA_INST_ERROR_MESSAGE, “InstOpen”, “Could
 not allocate memory for new instance of AG34411A Dmm.”, “”);
 free(userHandle);
 return NULL;
 }

 if (!((C34411*)(userHandle->pInstState))-> Initialize
 (szVISAaddr,0,0,””))
 {
 raise_exception (UTA_INST_ERROR_MESSAGE, “InstOpen”, “AG34411A
 Dmm.”, “”);
 delete (userHandle->pInstState);
 free(userHandle);
 return NULL;
 }

}

5

B. DeclareParms()

This function is used to declare parameters that TestExec passes to the DLL that

contains the hardware handler. These parameters instruct the DLL on the exact

hardware module to use. This is important in cases where the same DLL is used

with more than one module of the same type. The variable ‘DEVICEIDLABEL’ is

used to identify the device type.

 void UTADLL DeclareParms (HUTAHWMOD hModule, HUTAPBDEF hPBDef)
 {
 const char* const INT32TYPE = “CUtaInt32”;
 HUTAINT32 hData = NULL;
 HUTASTRING hSData = NULL;

 hSData = (HUTASTRING)UtaHwModDeclareParm(hModule, hPBDef,
 DEVICEIDLABEL, “CUtaString”, “E1411, HP34401A, AG34980A,
 AG34411A or L4411A only”);
 UtaStringSetValue(hSData, VXI_DMM_1411);
 }

C. Close ()

This function closes a hardware module opened with the Init() function and is

compulsory in all hardware handlers. Similar to the Init () function, TestExec

SL calls this function for each instance of a hardware module that uses this

hardware handler when a testplan is executed. This function is called when it

is time to close the hardware module such as when TestExec SL exits or when

system configuration changes. It is important to note that TestExec SL only calls

this function if the hardware module was opened by a successful call to the

Init () function, that is when no exceptions are raised. You have the option to

implement this function in any way that is needed to close the hardware module

such as freeing or deleting any memory associated with structures created with

the Init () function.

void UTADLL Close (HUTAHWMOD hModule, HUTAPB hParmBlock,
LPVOID pInitData)
{
 HUTAINST hInst = UtaHwModGetInst (hModule);
 INSTSTATE * userHandle = (INSTSTATE *) pInitData;

 try
 {
 ((CDmm*)(userHandle->pInstState))->Close();
 delete (userHandle->pInstState);
 free (userHandle);
 return;
 }
 catch(...){
 raise_exception (UTA_INST_ERROR_MESSAGE, “Close”, “Internal
 error in hwhdmm_base.dll.”, “”);
 }
}

6

D. Reset ()

This function resets a hardware module and returns the amount of time it takes

to complete the reset process. This function is normally used when a new

testplan is loaded or when recovery from an error is required. To prevent ‘hot

switching’, TestExec resets the instruments first before resetting the hardware

handler.

UTAUSECS UTADLL Reset (HUTAHWMOD hModule, HUTAPB hParmBlock,
LPVOID pInitData)
{

 IUtaInt32 nGlobalReset (hParmBlock, RSETLABEL);
 INSTSTATE * userHandle = (INSTSTATE *) pInitData;

 if (nGlobalReset)
 ((CDmm*)(userHandle->pInstState))->Reset();

 return 0;
}

E. Voltage Measurement

This is an example on using Agilent 34411 to measure DC voltage via the action

‘dmmMeasureDCV’.

void UTAAPI dmmMeasureDCV (HUTAINST dmm, SLONG meastype, double
expectedreading, long MeasurementMode, double *result)
{
 int nRtn;
 char* szInstErr;
 char szErr[5000];

 INSTSTATE *userHandle = NULL;
 userHandle = (INSTSTATE*) UtaInstGetUserHandle(dmm);
 CDmm* myDmm = (CDmm*)(userHandle->pInstState);

 if (myDmm == NULL){
 szInstErr = myDmm->GetError();
 sprintf(szErr, “Error in action dmmMeasureDCV.”);
 UtaExcRaiseUserError(szErr, 9);
 }

 nRtn = myDmm->MeasDCVolts(meastype, expectedreading, result);
 if (!nRtn){
 szInstErr = myDmm->GetError();
 sprintf(szErr, “Error in action dmmMeasureDCV”);
 UtaExcRaiseUserError(szErr, 9);
 }
}

7

If no error is detected, the function ‘MeasDCVolts’ in ‘dmmMeasureDCV’ will

then invoke the function ‘MeasDCVolts’ in Class 34411 as shown in the example

below. For the list of hardware functions that you can use to make reference

calls, you can refer to the instrument’s programming manual.

int C34411::MeasDCVolts(int resolution, double expected,
double *result)
{
 IAgilent34410DCVoltagePtr spDCV;
 try{
 spDCV = IAgilent34410Ptr(__uuidof(Agilent34410));
 *result = spDCV->Measure(range, resolution);
 }
 catch(...){
 sprintf (m_ErrStr, “Exception thrown in Agilent34411 IVI-COM
 driver IAgilent34411DCVoltagePtr interface.”);
 return FN_FAIL;
 }
 return FN_SUCCESS;
}

F. DMM Configuration

This is an example on configuring the Agilent 34411 via the action

‘dmmConfFunction’.

void UTADLL dmmConfFunction (HUTAINST dmm, SLONG func,
double range, double res)
{
 int nRtn;
 char* szInstErr;
 char szErr[5000];

 INSTSTATE *userHandle = NULL;
 userHandle = (INSTSTATE*) UtaInstGetUserHandle(dmm);
 CDmm* myDmm = (CDmm*)(userHandle->pInstState);

 if (myDmm == NULL){
 szInstErr = myDmm->GetError();
 sprintf(szErr, “Error in action dmmConfFunction.”);
 UtaExcRaiseUserError(szErr, 9);
 }

 nRtn = myDmm->ConfigureFunction(func, range, res);
 if (!nRtn){
 szInstErr = myDmm->GetError();
 sprintf(szErr, “Error in action dmmConfFunction.”);
 UtaExcRaiseUserError(szErr, 9);
 }
}

Step 4: Building
the Project

After you have completed writing the

hardware handler, it is good to verify

the contents of your project to ensure

that all the files are intact. Selecting

the FileView pane helps you to check

on your files easier. There are two

configurations that you can choose

to build your project – Release and

Debug. The debug version contains

additional codes that provide more

details to facilitate your debug.

Conclusion

There are clear benefits of using

DLLs. Firstly, DLLs provide a way

to modularize applications so that

their functionality can be updated

and reused more easily. In addition,

DLLs help reduce memory overhead

when several applications use the

same functionality at the same time

because although each application

receives its own copy of the DLL

data, the applications share the DLL

code.

You can refer to the TestExec SL

Online Help for the list of TestExec

functions or if you have TS5400

library installed in your system, you

can refer to the TS5400 Online Help

for the list of hardware handler

functions.

For more information on TestExec SL,

please go to

www.agilent.com/find/testexec

Remove all doubt

Our repair and calibration services

will get your equipment back to

you, performing like new, when

promised. You will get full value out

of your Agilent equipment through-

out its lifetime. Your equipment

will be serviced by Agilent-trained

technicians using the latest factory

calibration procedures, automated

repair diagnostics and genuine parts.

You will always have the utmost

confidence in your measurements.

For information regarding self

maintenance of this product, please

contact your Agilent office.

Agilent offers a wide range of additional

expert test and measurement services

for your equipment, including initial

start-up assistance, onsite education

and training, as well as design, system

integration, and project management.

For more information on repair and

calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com/find/emailupdates

Get the latest information on the

products and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test

equipment solutions with confidence.

www.lxistandard.org

LXI is the LAN-based successor to

GPIB, providing faster, more efficient

connectivity. Agilent is a founding

member of the LXI consortium.

For more information on Agilent
Technologies’ products, applications
or services, please contact your local
Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 01 36027 71571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 07031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: July 2, 2009

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2009
Printed in USA, September 10, 2009
5990-4653EN

www.agilent.com

www.agilent.com/find/testexec

