
Using ADS for Signal Integrity
Optimization

White Paper

Authors:

Hermann Ruckerbauer, EyeKnowHow.de

Sanjeev Gupta, Agilent Technologies, Inc.

Characterizing a
Channel: Today and
Tomorrow

In the beginning there was transient simulation. Ensuring functional chip-to-chip

links in a system meant performing a time-domain simulation with a SPICE

simulator. The result was a time-domain waveform that was evaluated during

post processing for signal integrity (SI). The main task was to measure the eye

diagram, usually assuming a perfect clock as the phase reference (Figure 1).

Due to rising signaling speeds and decreasing timing margins, the task was

made more challenging when it became necessary to account for other effects.

For chip-to-chip communication systems that used an embedded clock, the

phase-locked-loop behavior was taken into account and the jitter simulated or

subtracted from the remaining timing margin of the eye. For source synchronous

signals, the clock was also simulated and used for setup/hold calculations

or data eye generation. In addition to link architecture changes, simulation

accuracy had to be improved to account for the decreased margins, resulting in

complex modeling that took into account even small parasitics.

The time-domain simulation needed to include the worst case combination of all

negative signaling effects. To figure out a system’s real margin, the worst case

intersymbol interference (ISI) had to be combined with worst case crosstalk

(X-talk). The simplest way to accomplish this was to perform a simulation with

a pseudorandom bit sequence (PRBS) pattern, long enough to account for the

memory of the channel, and combine it with even and odd X-talk (Figure 2).

While this is a simple process

involving two steps—simula-

tion and post processing—it

demanded a lot of calculation

time. A single simulation

alone could run overnight,

with the post processing

occurring the next day.

The huge amount of data

produced made it impossible

to do the post processing

in real time. Although, in

comparison to simulation,

the time involved for post

processing was short—taking

just minutes to get results.
Figure 1. Data eye with phase reference

and AC/DC “tSH” measurement

Figure 2. Time-domain simulation with a 212 PRBS

pattern, and even and odd X-talk

2

Characterizing a
Channel Today

Simulation accuracy has always been adjusted to the available calculation

power. So, for optimization of a channel, several long running simulations were

needed. As a result, it was necessary to reduce the accuracy and to optimize

each effect separately. Even today it is a good idea to separate ISI and X-talk.

It is only during the final evaluation (which is used to judge pass or fail) that

all effects are taken into account in simulation. To minimize calculation time,

this traditional channel characterization method has now been significantly

improved.

Today, channels are characterized by a step or (im)pulse response—a method

that is used by ADS Channel Simulator in statistical mode. Instead of performing

a long time-domain simulation with a PRBS source, only a single rising and

falling edge is simulated (Figure 3). Out of these edges, the channel behavior

and worst-case data eye can be calculated. This can also be accomplished

using an S-parameter characterization of the channel, but the step response has

one significant advantage—it is a straight forward process to use a real driver

and receiver. SPICE or IBIS models can be used for the driver and receiver, so

information on the nonlinearity of these devices is already included in the infor-

mation of the step responses. Most statistical eye tools also allow the engineer

to use an S-parameter as the channel description, but in this case the user has

to use an ideal linear (50 ohm) driver or build a behavioral model of the driver

and receiver.

Statistical eye tools can calculate deterministic ISI and X-talk effects. So, at first

glance, several simulations need to be done: one for the data signal (the victim),

stimulating it with a rising and falling edge and observing the output; and one

for each aggressor whereby the victim’s response is observed. This process can

be simplified by stimulating all aggressors at once and only observing the com-

bined impact on the victim. An even simpler approach is to stimulate the step

only on the victim channel and to monitor both the victim and the aggressor

output, with the condition that a channel on a printed circuit board is a passive

linear system. In this case, the victim’s response to a stimulated aggressor is

the same as the other way round. While this might not be exactly true in real-

world systems, or when doing a layout accurate simulation, since the aggressor

may have a different routing then the victim, as a first order result it is accurate

Figure 3. Simulation result for a rising and falling step. Usually real systems

do not have symmetric edges so both are needed.

3

enough. The engineer can therefore, evaluate a system with multiple aggressors

with a single simulation.

This approach results in short simulation times. Another big advantage of this

method is that other effects can be evaluated without doing a new simulation.

The statistical tools can add random jitter for Tx and Rx circuits and calculate

bit error rates (BERs). Pre-emphasis and equalization can be added, and even

the optimized taps can be calculated. The pattern of the signals can also be

changed from a PRBS to a clock pattern. Doing a fast Fourier transform (FFT) on

the signal shows the channel characteristics in the frequency domain (Figure 4).

Prior to ADS 2008, a third-party tool was required to complete this method.

One could use the export from the data display to write the step response to a

simple ASCII file. A better approach though, is to write it directly out from the

simulation by using the “write_var” command in a “MeasEqn” or, even better,

from a separate netlist. Using a netlist has a huge advantage in that the equa-

tions can be written in a normal text editor with all copy and past functions.

While not intended for this function, it is possible to generate a fully automated

process for data evaluation for a third-party tool using “write_var.” When

doing a sweep, subdirectories can be created using the “mkdir” command for

each sweep step. All variables of the design can be written into a text file to

document the simulation conditions. The simulation result is then exported. The

script can even run the third-party tool over all the sweep cases to do the post

processing and data evaluation.

With the introduction of ADS 2008, third-party tools are unnecessary due to the

implementation of the timed data flow Ptolemy simulator. SI engineers might

therefore prefer to perform the necessary simulations directly in ADS. In ADS

2009, a data eye can be easily generated using the Channel Simulator feature

(Figure 5). For those engineers who have already implemented their own statisti-

cal tool for data evaluation, it might be advisable to stick with the external

approach. But, for those engineers who are just now beginning to use this

method, the Channel Simulator feature in ADS 2009 offers the ideal

place to start.

Figure 4. The FFT gives the engineer a good idea of the

channel’s quality (SNR)

Figure 5. Data eye generated with the ADS

Channel Simulator feature

Characterizing a
Channel Today
(continued)

4

Efficiently Optimizing a
Channel

While there are a number of ways to investigate the quality of an existing

channel, the real difficulty lies in optimizing the channel. The simplest approach

is to do parameter sweeps over all interesting variables. It requires a

substantial amount of work, but is a relatively straight forward process to use

on a point-to-point connection. For example, on each of the parameters (e.g.,

board impedance (Z
0
), driver impedance (R

on
) and termination impedance (R

TT
)),

the dependency can be found and the best case can be taken. In a perfect

system, all impedances should match, so a configuration where Z
0
 = R

on
 = R

TT
 is

a reasonable starting point. This is not the case in real-world systems, such as

when the routing impedance is imperfect due to packaging and vias. Since all

parameters interact with each other, each parameter can not be optimized on its

own. Nevertheless, a first order result will provide an optimized value for each

swept variable. A simulation can then be performed with the set of variables

found in separate sweeps. While the result might not be optimal, it will provide

a good configuration.

On a multidrop bus, channel optimization is quite complicated. As an example,

consider a source synchronous, burst type, bi-directional single-ended multidrop

memory bus (Figure 6). One of the most important requirements, regardless

of whether we’re talking about DDR2/DDR3 or the upcoming DDR4, is to con-

nect as much memory as possible at maximum speed to one channel. Such a

configuration creates a huge matrix of dependent and independent variables

that must be varied to achieve an optimal configuration. Due to the asymmetric

nature of the channel, the signal integrity characterization must be done twice:

separately for writes and reads where some of the variables are fixed for both

cases (e.g., board topology and impedance) and others can be optimized inde-

pendently (e.g., dynamic ODT settings).

Unfortunately, the outcome will be not a perfect eye, but the “best” solution can

be achieved by trading off the timing and voltage margins. The difficult part here

is answering the question: Which is the best solution? The simplest approach to

optimizing each parameter separately fails due to the high interaction between

the variables (e.g., the different termination schemes that interact highly with

the topology on the bus, the driver and board, and DIMM impedance). A brute

force method could be used to solve the problem. It involves performing a multi-

dimensional sweep and taking the best parameter combination. But, due to the

large amount of possible combinations, this is not a reasonable solution.

Figure 6. Multidrop memory bus example

5

Using ADS to Optimize
a Channel

The optimizer feature in ADS offers an ideal solution to optimizing a channel,

but how can it be utilized in such a complex system? One difficulty stems

from the fact that the optimizer needs feedback from the simulation. An often-

forgotten feature of ADS—the fact that each equation used in the data display

also works in the schematic—makes this possible. In other words, once the eye

calculation is proven to work in the data display, it can also be used at the sche-

matic level. The result can be used as input for the optimizer. Unfortunately, it is

not that easy to debug such a setup and even worse, a long running simulation

is needed to create a data eye. The previously described method of using the

step response for the eye calculation cannot be used as it requires an external

tool.

Luckily, the solution to this dilemma is just a few equations or lines of AEL code

away. Instead of using a step response, a unit interval (UI) wide pulse can be

used as the basis for the optimization. To begin, first normalize the pulse by

voltage scaling to provide a solid basis for different input signals. If this step is

not taken, different combinations of R
on

, R
TT

 and termination voltage (V
TT

) may

shift the signal and cause the equation to fail. The next step is to separate ISI

optimization from X-talk. Slice the pulse waveform into pieces smaller than

the UI. Where to make the cuts will depend on the real configuration. A good

approach is to center the UI around the maximum point of the pulse waveform.

If a clock or strobe signal is available, the engineer might also use this as the

phase information for centering the UI. The outcome is now one slice with

the information on the transmitted pulse (green area) and a lot of slices with

the information on pre- and post-pulse disturbances (yellow area), called ISI.

Subtracting each of the ISI UI’s from the transmitted-pulse UI reduces the pulse

like the ISI does. As shown in Figure 7, the signal is nearly settled in the 9th UI

after the pulse. Therefore, simulating 10 bits should be enough for this

investigation. Trying to catch the worst-case pattern with a conventional time-

domain simulation would require a PRBS simulation with a 210 bit PRBS pattern.

Figure 7. Pulse-response simulation result as input for the ADS optimizer

6

Now, let’s think about the evaluation of the data we just created. Having done

the subtraction of the noise UI’s from the signal UI, we can check the eye height

or eye width of the remaining pulse and use the outcome as the input for the

optimizer. As previously mentioned, achieving the optimal eye often requires a

trade off between voltage and timing margins. Consequently, there may be two

optimization goals: one for eye width and one for eye height. As it turns out, it

is quite difficult to find the correct weighting to achieve the optimum result for

both goals. A possible solution for this problem is to use the energy of the pulse

(e.g., by measuring the area underneath the pulse), instead of using voltage and

time. This can be achieved with less than 10 MeasEqn in the schematic. Using

AEL code provides an even more elegant and flexible solution.

Now, since we have the ISI, let’s take a look at the X-talk. As previously

described, assume that we have a passive linear system and can run only a

single simulation stimulating the victim with a UI wide pulse and measuring the

responses on the aggressors. On the right side of Figure 8, the top of the “vic-

tim” pulse is denoted as a black dashed line. The responses on the aggressors

are noted in different colors. Note that the noise of all the UI’s, including the UI

of the original pulse, has been calculated. This provides the necessary informa-

tion for the impact from the X-talk.

In this case, the X-talk peaks are injected exactly at the crossings of the signal.

If this does not fit your system (e.g., because you have a center aligned strobe),

you can shift the UI borders for slicing the aggressors as needed. This action

results in about 10 additional MeasEqn in the schematic, where the number of

equations increases with the number of the aggressors to be considered. If the

solution is implemented as AEL code, a loop can be used to create a small but

very flexible and fast AEL function.

Figure 8. Single 1-pulse and X-talk on 8 aggressors

Using ADS to Optimize
a Channel (continued)

7

Additional ADS
Features

The nice thing about this simulation is that it provides more information. Finding

the worst-case pattern for a “1” is quite simple. Checking backwards for each UI

to determine whether the level at the strobe point is above or below the refer-

ence level results in the worst-case pattern for the given channel. In the case

shown above, this is a “01000101010” starting from UI-9 where the underscored

blue “1” is the worst case pulse. The “+” and “–” signs in the noise-UI slices

indicate that the resolution of the picture does not allow the engineer to read

out the exact pattern. With the AEL code, there is no problem in reading out the

pattern. For the worst case “0,” the pattern just needs to be inverted if rising

and falling edges of the pulse are symmetric.

The SI engineer can also calculate the required pattern length (PRBS or step

response) for a given accuracy. For example, to get a pattern length that

catches at least 97% of the ISI noise, one pulse simulation that is absolutely

long enough is needed. In this case, a pattern of 10 bits would be on the safe

side. There are several ways to do the calculation. Each of the implementations

below is a bit correct.

One solution is to measure the area under the trace for all slices and then sum

up the positive area of all noise UI’s. Once you cross the 0.97 point from the

overall area you know how much bits to simulate. It might be better to first use

the abs() function to ensure that each part of the area inside a noise slice is

accounted for and that a pulse with the same amount of positive and negative

area (e.g., the noise UI-2 in the above example) is not “ignored.” You might also

just sum up the abs() of the levels at the sampling point. While none of these

solutions will provide an absolutely correct result, they do provide just enough

accuracy to accomplish the goal at hand, without requiring too much program-

ming effort.

Conclusion With only 10 to 20 lines of AEL code, it is possible to replace a multi-

dimensional sweep of a long running PRBS time-domain simulation (including

manual data evaluation) by a short, channel-pulse characterization. As shown

in this white paper, there are a number of different options to implementing the

required calculations. None of the options are perfect, but perfection here is not

required. We simply need to find the best case configuration and a reasonable

input for the optimizer. Checking the quality of the resulting parameter set is still

a task for conventional simulation and the timing budget calculation. Given a

practical example, this method provided a 12% improvement in eye height over

the solution found with sweeps for independent, single-parameter optimization.

Moreover, this method produced this result in much shorter time, further validat-

ing that by using all the ADS features SI engineers can not only improve their

results, but dramatically speed up their work as well.

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the

products and applications you select.

For more information on Agilent
Technologies’ products, applications
or services, please contact your local
Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Latin America 305 269 7500
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 43 (0) 1 360 277
1571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 49 (0) 7031 464
6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: October 1, 2009

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2009
Printed in USA, October 19, 2009
5990-4783EN

www.agilent.com

More information:

* Signal integrity solutions from Agilent EEsof EDA:

 http://www.agilent.com/find/signal-integrity

* EyeKnowHow:

 http://EyeKnowHow.de

