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Abstract

When performing a calibration, the risk of incorrectly declaring a device as 

in-tolerance (false-accept risk) is dependent upon several factors. Those fac-

tors include the specified tolerance limit, guard-band, the calibration process 

uncertainty and the a priori probability that the device is intolerance. A good 

estimate of the a priori probability may be difficult to obtain. Historical or device 

population information for estimating the a priori probability may not be readily 

available and may not represent the specific device under test.

A common strategy for managing measurement decision risk is to choose a 

guard-band that results in the desired false-accept risk given the tolerance 

limit, the calibration process uncertainty and the a priori probability. This paper 

presents a guard-band strategy for managing false-accept risk with only limited 

knowledge of the a priori probability that a device is intolerance.

Authors

Michael Dobbert

Agilent Technologies



2

When determining if measurement 

quantities are within specified toler-

ances, ANSI/NCSLI Z540.3-2006 

specifies that the maximum level of 

false-accept risk be no more than 2%. 

False-accept risk is the probability 

that measuring an out-of-tolerance 

device will indicate an intolerance 

condition due to measurement error. 

False-reject risk is the probability that 

measuring an in-tolerance device will 

indicate an out-of-tolerance condition 

due to measurement error. False-

accept and false-reject occurrences 

have financial consequences, and 

therefore, minimizing both is often a 

worthwhile objective.

One strategy for managing false-

accept risk is to apply a guard-band 

such that the acceptance limits are 

more stringent that the tolerance 

limits. A common practice (see [3]) is 

to set the guard-band to a value equal 

to the 95% expanded uncertainty of 

the calibration process. This level of 

guard-band guarantees the Z540.3 

false-accept risk requirement and 

is attractive in that it only requires 

information that many calibration 

Introduction

organizations routinely manage (that 

is, the tolerance limits and the 95% 

expanded uncertainty, which is set 

as the guard-band). However, when 

using a guard-band to reduce false-

accept risk, a corresponding increase 

results in the false-reject risk. With 

the guard-band set to the 95% 

expanded uncertainty, the false-reject 

risk can be disproportionately high 

(see Figure 3).

An alternative to applying a guard-

band equal to the 95% expanded 

uncertainty is to determine the false-

accept risk and set an appropriate 

guard-band, if necessary, that adjusts 

the false-accept risk to the desired 

level. To determine the level of 

false-accept (or false-reject risk) for a 

calibration measurement, the follow-

ing information is necessary:

• tolerance limits

• guard-band

• calibration process uncertainty

• a reasonable estimate of the a 

priori probability that a device is 

in-tolerance

The a priori probability is the likeli-

hood that a device is in-tolerance 

prior to performing the calibration. It 

is typical to estimate the a priori prob-

ability from the observed in-tolerance 

rate for a population of like devices. 

However, if historical observations 

are unavailable, or if there is reason 

to believe the device that is the sub-

ject of calibration does not belong to 

the observed population, other means 

of estimating the a priori probability 

are necessary.

Managing the estimate of the a priori 

probability requires additional effort 

compared with defining a guard-band 

equal to the 95% expanded uncertain-

ty. This paper presents a guard-band 

strategy to meet the Z540.3 false-

accept requirement that does not 

require significant knowledge of the 

a priori probability and yet, achieves a 

reasonable false-reject risk.
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False-accept risk can be determined by evaluating the joint probability density 

function that models a calibration measurement (see [1]). Assuming Gaussian 

distributions for the calibration process uncertainty and the a priori probability, 

the joint probability density function is, 

Determining False-Accept and False-Reject Risk

where

e
dut

 = the error of the device under test, which the calibration attempts to quantify

y = the observed calibration result

σ
0
 = standard deviation of the a priori probability distribution

σ
m
 = standard deviation of the measurement error (standard uncertainty)

The joint probability density function defines probability over a two-dimensional 

surface area. The total probability for a given two-dimensional rectangular area 

is found by integrating the joint probability density function over a region. That 

is, the probability for a given region is, 
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where R defines a particular region. To determine false-accept risk, assuming 

symmetrical two-sided tolerances, it is necessary to evaluate equation (1) 

over two regions defined as,

T ≤ e
dut

 ≤ ∞ and -A ≤ y ≤ A

and,

-∞ ≤ e
dut

 ≤ -T and -A ≤ y ≤ A
where

T = tolerance limit

A = acceptance limit

and the acceptance limit is defined as the difference between the tolerance 

limit and the guardband,

A = T − GB

Likewise, to determine false-reject risk, it is necessary to evaluate equation (1) 

over the regions defined as,

-T ≤ e
dut

 ≤ Τ and -∞ ≤ y ≤ -A

and,

-Τ ≤ e
dut

 ≤ T and A ≤ y ≤ ∞

Eq. (1)
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False-Accept Characteristics

To evaluate equation (1), it is 

necessary to estimate the standard 

deviation for the a priori probability 

distribution. Assuming a Gaussian 

distribution, the standard deviation 

can be estimated as,

spreads beyond the tolerance limits. 

As it spreads, there comes a point 

that the majority of devices are now 

out of tolerance and the number of 

devices near the tolerance limits 

decrease. Eventually, randomly select-

ing a device close enough to the 

tolerance limits that it might appear 

as in-tolerance due to measurement 

error becomes unlikely.

Given that false-accept risk 

approaches 0% at the extreme ends 

of the in-tolerance probability range, 

the maximum false-accept risk exists 

at an intermediate in-tolerance prob-

ability level for a given TUR.

Applying a guard-band to a calibration 

measurement (that is, setting the 

acceptance limits tighter than the 

tolerance limits) reduces false-accept 

risk. Applying a guard-band in this 

fashion has the effect of lowering 

the risk curves shown in Figure 1. 

For a given TUR, it is possible to 

apply just enough guard-band so that 

the maximum risk level is below a 

desired level. For Z540.3 compliance, 

the maximum level is 2%. Applying 

guard-band to manage the maximum 

possible false-accept risk, referred to 

as managed risk guard-band, assures 

compliance for any level of intoler-

ance probability.

Figure 1. False-Accept Risk (where the acceptance limits equal the tolerance limits)

Eq. (2)
T

σ
0
 = 

2

1 + p
F –1

where

T = tolerance limit

p = observed in-tolerance 

  probability

F-1 = inverse normal 

  distribution function

From equations (1) and (2), it is 

possible to generate a data set con-

taining false-accept risk as a function 

of in-tolerance probability and TUR1. 

Figure 1 illustrates a data set for 

which the acceptance and tolerance 

limits are equal.

As can be observed, for all values 

of TUR, false-accept risk decreases 

as the in-tolerance probability 

approaches 100%. To understand 

this, imagine a population of devices. 

Recall that a false-accept is to ran-

domly select a device that happens 

to be out-of-tolerance but appears to 

be in-tolerance due to measurement 

error. If all devices are in-tolerance, 

then no out-of-tolerance devices exist 

within the population for which a 

false-accept is possible, so the prob-

ability of false-accept approaches 0%.

Interestingly, as the in-tolerance 

probability approaches 0%, the false-

accept risk also decreases. Consider 

that as the in-tolerance probability 

decreases, the device population 

1. Test Uncertainty Ratio, as defined in paragraph 3.11 of [2].
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Applying guard-band to manage 

maximum false-accept risk results 

in a guard-band that is always less 

than the 95% expanded uncertainty. 

Accordingly, the acceptance limits 

can be expressed as follows,

        A = T − U
95%

 × M

where

A = acceptance limit

T = tolerance limit

U
95%

 = calibration process 95% 

  expanded uncertainty

M = multiplier: the fraction of the 

  95% expanded uncertainty for 

  which the acceptance limits 

  provide the desired false-

  accept risk

Using equation (3) to define the 

acceptance limits and setting the risk 

equation to equal the Z540.3 required 

2% false-accept risk,

Managed Risk Guard-band

or

sk

ed Figure 2. Maximum False-Accept Risk

Eq. (3)

By curve fitting M versus TUR (see 

Appendix), it is possible to derive an 

empirical equation for determining M 

as a function of TUR, denoted M2% 

to indicate the equation represents a 

maximum 2% false-accept risk. That 

equation2 is as follows.

R

2% = ∫∫ p0
 (e

dut
) p

m
 (y – e

dut
) dA

it is possible to solve for M. The 

maximum false-accept point for a 

given TUR can be found visually 

from Figure 2, or alternatively, by 

using numerical search algorithms 

(see Appendix). Solving for M at the 

maximum false-accept risk points 

guarantees false-accept risk is always 

below a specified level for a given 

TUR. Table 1 shows values of M at in-

tolerance probabilities corresponding 

to the maximum false-accept risk as a 

function of TUR.

It is possible to use equation (4) to 

determine acceptance limits that 

guarantees the Z540.3 false-accept 

risk requirement and only requires 

minimal knowledge of the a priori 

probability distribution. Specifically, 

equation (4) assumes the a priori prob-

ability density function is Gaussian and 

centered within the tolerance limits, 

but otherwise, it is independent of the 

distribution spread. 

Table 1. Managed Risk Data

TUR
In-Tolerance Probability for 

Maxium False-Accept Risk
Maximum False-Accept Risk

M x 100% 

(to achieve 2% false-accept risk)

1.5:1 59.62% 5.420% 35.89%

2:1 61.50% 4.249% 27.93%

3:1 63.55% 2.968% 15.36%

4:1 64.65% 2.281% 5.32%

2. The log() function is the natural logarithmic function.

Eq. (4)

M
2%

 = 1.04 – e(0.38•log(TUR)–0.54)
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Comparing Guard-Band Strategies

Figure 3 provides a graphical compari-

son of different guard-band strategies. 

The upper-left and lower-left plots 

show false-accept and false-reject risk 

without applying guard-band (i.e., the 

acceptance limits equal the tolerance 

limits). A guard-band equal to the 95% 

expanded uncertainty significantly low-

ers false-accept risk to less than 0.15% 

for virtually all TUR (upper-middle plot). 

This more than meets the Z540.3 2% 

false-accept risk requirement. In this 

case, however, the false-reject rate 

can be significant (lower-middle plot). 

The upper-right and lower-right plots 

show false-accept and false-reject 

risk using a managed risk guard-band. 

For a managed risk guard-band, the 

acceptance limits are set by combining 

equations (3) and (4) as,

Choosing acceptance limits using 

equation (5) adjusts each TUR false-

accept curve so that the maximum 

false-accept risk is never more than 

2%. Compared with a 95% expanded 

uncertainty guard-band, the impact on 

false-reject risk is significantly less.

Figure 3. Comparison of Guard-Band Strategies

A
2%

 = T – U
95%

 × [1.04 – e(0.38•log(TUR)–0.54)] Eq. (5)
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Conclusions

A managed risk guard-band provides 

a false-accept risk generally between 

1% and 2% for most in-tolerance 

probabilities and TUR. The false-

accept risk is reasonably insensitive 

to TUR and is never more than 2%, 

and therefore, guarantees the Z540.3 

2% risk requirement. A managed 

risk guard-band ensures Z540.3 

risk requirements without requiring 

knowledge of the standard deviation 

for the a priori probability distribution, 

which can be a problematic statistic 

to obtain and manage. Applying a 

managed risk guard-band requires 

virtually the same effort as a 95% 

Appendix

Matlab®, version7.3.0.267 (R2006b), 

was use for all numerical analysis for 

this paper. Relevant Matlab® script 

files are available for download at [4].

To develop the managed risk 

guard-band equation, first maximum 

false-accept risk values for each TUR 

(listed in Table 2) were determined 

using the Matlab® fminbnd() function. 

The fminbnd() function finds the mini-

mum of a single-variable function on 

a fixed interval. The function in this 

case numerically integrates the joint 

probability density function using the 

Matlab® dblquad() function. The dbl-

quad() performs a numerical double 

integration. With values for maximum 

false-accept risk as a function of TUR, 

the Matlab® fsolve() function was 

used to find values of M that result in 

2% false-accept risk.

Curve fitting the M versus TUR data 

was a two-step process. The first step 

involved taking the natural logarithm 

of both M and TUR and then optimiz-

ing a fixed offset added to M for the 

best linear fit of the transformed data. 

Using this two-step process provided 

the best fit as well as a relatively 

simple equation for M as a function 

of TUR. The curve fit used all the M 

and TUR data in Table 2.

Table 2. Extended Managed Risk Data

TUR
In-Tolerance Probability for 

Maxium False-Accept Risk
Maximum False-Accept Risk

M x 100% 

(to achieve 2% false-accept risk)

1.1:1 57.15 % 6.956 % 43.68 %

1.2:1 57.89 % 6.495 % 41.58 %

1.3:1 58.54 % 6.092 % 39.59 %

1.5:1 59.62 % 5.420 % 35.89 %

1.75:1 60.67 % 4.763 % 31.72 %

2:1 61.50 % 4.249 % 27.93 %

2.5:1 62.71 % 3.495 % 21.22 %

3:1 63.55 % 2.968 % 15.36 %

3.5:1 64.18 % 2.579 % 10.11 %

4:1 64.65 % 2.281 % % 5.32 %

5:1 65.34 % 1.852 % -3.23 %

6:1 65.80 % 1.559 % -10.81 %

8:1 66.40 % 1.184 % -24.08 %

10:1 66.76 % 0.955 % -35.73 %

12:1 67.01 % 0.800 % -46.37 %

15:1 67.26 % 0.643 % -61.13 %

19:1 67.47 % 0.510 % -79.49 %

expanded uncertainty guard-band; 

however, the false-reject risk is 

significantly lower for the managed 

risk guard-band. Moreover, only 

false-reject risk is sensitive to TUR. 

This allows setting quality standards 

around minimum TUR based primarily 

on consideration of false-reject risk.
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Figure 4 shows M versus TUR from 

Table 2 using ‘o’ symbols. The 

continuous line represents the fitted 

data using Equation (4) displayed as 

percentage.
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