
Enable higher productivity through a simple, open and expandable waveform creation environment. Create
and deploy complex waveforms or develop emerging communications standards based waveforms.

Abstract
The Agilent M9099 Waveform Creator application software
provides a simple, open and expandable waveform creation
environment for use with Agilent’s M9381A PXIe Vector Signal
Generator and SystemVue system level design software.
Designing devices for higher data rates and wider bandwidths
requires more complex signals to verify how the device would
perform in its real environment. Using Waveform Creator,
individual waveform segments can be created using available
waveform plug-ins or user created plug-ins. This application
note describes how to create user plug-ins which can be fully
integrated with Waveform Creator to deploy signal generation
capabilities that meet your requirements.

Easily Create Custom
Waveform Plug-Ins
With Waveform
Creator Application
Software

APPLICATION NOTE

Challenge the Boundaries of Test
Agilent Modular Products

2

Introduction
The Agilent Waveform Creator provides a framework for
creating custom baseband and modulated RF waveforms and
enables the custom waveforms to be used in R&D, design
validation and manufacturing test. This paper describes how
waveform segments can created, dragged and modified with
user-definable parameters and then downloaded into the
M9381A PXIe VSG or outputted as an unencrypted data file.

Key issues faced in complex signal
generation
Test engineers face the challenge of creating complex custom
signals needed to test many of today’s RF systems and
emerging communications standards. Typically, assembly
of such waveforms requires multiple tools and different
waveform formats to be aggregated. This leaves the user
with the time consuming task of modifying waveform timing

alignment, resampling to different carrier frequencies and
sample rates, as well as performing waveform validation.

This application note demonstrates how to use Waveform
Creator, a simple, yet powerful tool to address these chal-
lenges. Waveform Creator provides:

•	 A simple, standard programming interface to easily create
user definable and configurable waveform plug-ins.

•	 A platform for using customized plug-ins to create custom
waveforms.

Waveform Creator ships with generic plug-ins, implemented
with a selection of digital modulation formats that can also
be manipulated as described above. Waveforms generated by
Agilent’s SystemVue can also be accessed and manipulated
by Waveform Creator.

Waveform plug-ins

Output /
downloader plug-in

Waveform Creator Core framework and user interface
M9099T-LIC Waveform Creator “Core”

Utility
(Included in M9099T

“Core”)

File import
(Included in M9099T

“Core”)

Multitone
(Included in M9099T

“Core”)

User defined
formats

File write
(Opt DFW)

M9381A VSG
(Included in M0900T

“Core”)
GP digital

(Opt AYA)

Mixer SwitchImpairments

SystemVue
model plug-in

(Opt SVM)

Figure 1. Plug-ins shipped with Waveform Creator indicated by red shaded boxes, including user defined format capability, the subject of this
application note.

3

Figure 3. Add reference file browser window in Microsoft Visual
Studio 2010

6.	The Solution Explorer pane should now look like Figure 4.
These are the only external references you will require to
work with Waveform Creator.

a. The Agilent.WaveformCreator.Core.Interfaces DLL
defines the IPlugInSegmentBuilder interface.

b. The MathNet.Iridium DLL defines the Complex class
and provides other advanced math functions used
by Waveform Creator. The MathNet.Iridium DLL is
part of the open source Math.Net project “Iridium
(Numerics)”. The latest version of this library is
available from http://www.mathdotnet.com/ and
the documentation can be found at http://www.
mathdotnet.com/doc/Iridium.ashx.

3.	VS2010 will construct the project and open the Class1.cs
source file containing some basic template code.

4.	In the Solution Explorer pane, right click on the default
class name “Class1.cs” and rename. In the example, it
is named “SimpleFM.cs”. VS2010 will ask to perform a
rename of all references to the code element ‘Class 1’.
Select “Yes”.

5.	Again in the Solution Explorer pane, right click on
“References” and select “Add Reference” to bring up the
dialog. Then click the “Browse” tab, and browse to wher-
ever Waveform Creator is installed. The default location is:
C:\Program Files (x86)\Agilent\M9099 Waveform Creator

Select the DLL file called Agilent.WaveformCreator.Core.
Interfaces.dll, as shown in Figure 3. Repeat the procedure
to add a reference to the DLL file called MathNet.Iridium.dll
which should be in the same directory as the interfaces DLL.

Figure 2. New project setup in Microsoft Visual Studio 2010.

Creating custom waveforms with Waveform
Creator
The M9099 Waveform Creator application software enables
custom functions, implemented as external DLLs, to be
created and “plugged into” a general purpose core with very
little system programming overhead. These custom plug-ins
can be used to implement in-house proprietary technology,
that can then be distributed as a reference implementation to
other Waveform Creator installations within an organization.
Once a waveform is generated by a plug-in, it can be mixed
with other signals, deliberately distorted, post processed,
have noise added, be sin(x)/x pre-corrected, then saved to a
file for use in simulation work, or downloaded to an Agilent
instrument, such as a vector signal generator, for real-time
play out.

Building a custom waveform plug-in
This section demonstrates how easy it is to create a plug-in
that generates a simple FM waveform, at IQ baseband, with
control over the modulating frequency and the modulation
index. The process illustrated below uses Microsoft Visual
Studio 2010 (“VS2010”) as the development environment.

1.	Run VS2010 and from the menu bar select File | New |
Project…

2.	Select Class Library from the list of templates and enter a
project name. In the example, it is called “MyWaveform”.
See Figure 2.

4

9.	Click on the word IPlugInSegmentBuilder, then hover over
the small blue rectangle that appears under the letter I
until a dropdown appears. Click and select “Implement
interface ‘IPlugInSegmentBuilder” as shown in Figure
5. This will auto generate a code template for your class
with the necessary public methods and parameters shown
below.

Figure 5. Selecting the implement interface option

7.	Next, open or switch to the class definition code file and
add the lines highlighted in bold font below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agilent.WaveformCreator.Core.

Interfaces;
using MathNet.Numerics;

namespace MyWaveform
{
 public class SimpleFM
 {
 }
}

8.	Create a new class from the iterator class
“IPlugInSegmentBuilder”.

namespace MyWaveform
{
 public class SimpleFM :

IPlugInSegmentBuilder
 {
 }
}

Figure 4. Solution explorer window with all references added.

5

At this point the code is buildable, but will not run in
Waveform Creator because it will not write any data to
“rawDataFile”, which Waveform Creator would report as a
zero-length segment. To continue, temporarily write an array
of zero-valued complex numbers. Using MathNet.Numerics
statement, simply add:

public double BuildWaveform(double tar-
getSampleRate, ISegmentDataFileBuilder
rawDataFile)

 {
 Complex[] signal = new

Complex[1000];
 rawDataFile.Write(signal);

 return 1.0 / targetSampleRate;
 }

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agilent.WaveformCreator.Core.

Interfaces;
using MathNet.Numerics;
namespace MyWaveform
{
 [Serializable]
 public class SimpleFM :

IPlugInSegmentBuilder
 {
 public double Fm { get; set; }
 public double modIndex { get; set;

}
 public int minSamples { get; set; }

 public SimpleFM()
 {
 Name = "Simple FM";
 Fm = 1000000.0;
 modIndex = 0.5;
 minSamples = 65536;
 }

 public double BuildWaveform(double
targetSampleRate, ISegmentDataFileBuilder
rawDataFile)

 {
 return 1.0 / targetSampleRate;
 }

 public string Name { get; private
set; }

 }
}

As illustrated in the programming code at right:

10.	 Add the attribute [Serializable] to indicate that the class
can be serialized (used for save / recall).

11.	 Re-work the definition of the Name method so that it can
be read publicly but only set privately.

12.	 Add properties to control the modulation frequency,
modulation index and the minimum number of samples in
the output waveform.

13.	 Add a constructor method to initialize the various proper-
ties.

14.	 Add a return value to the main BuildWaveform method.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agilent.WaveformCreator.Core.

Interfaces;
using MathNet.Numerics;

namespace MyWaveform
{
 		 public class SimpleFM :

IPlugInSegmentBuilder
 		 {
 		 public double

BuildWaveform(double targetSampleRate,
ISegmentDataFileBuilder rawDataFile)

 		 {
 			 throw new

NotImplementedException();
 		 }

 		 public string Name
 		 {
 			 get { throw new

NotImplementedException(); }
 		 }
 		 }
}

6

This completes the creation of a minimum viable waveform
DLL. At this point, VS2010 will build the solution successfully
with no errors or warnings. Since we are developing a plug-in
for Waveform Creator we will need to run Waveform Creator
from VS2010 to debug our code.

1.	Configure VS2010 to copy the compiled plug-in code into
Waveform Creator’s plug-in directory:

•	 In the Solution Explorer pane, double click on the
Properties folder to open the project properties

•	 Select the Build Events tab

•	 Select Edit Post-build and add the command:
	 copy "$(TargetPath)" "C:\Program Files

(x86)\Agilent\M9099 Waveform Creator\
PlugIns\"

2.	Make VS 2010 run Waveform Creator to start a debug
session:

•	 Open the project properties (if it’s not already open)

•	 Select the Debug tab

•	 Change the Start Action to the Start external program
option and set the associated field to: C:\Program
Files (x86)\Agilent\M9099 Waveform Creator\Agilent
Waveform Creator.exe

Now you can start a debug run in VS2010.

•	 First, click Build (F6)
•	 Then, start Debugging (F5).

Waveform Creator should start up and you should see the
“Simple FM” tab in the segment library. When you drag a
segment into the Waveform Editor area, you should see the
segment property grid appear on the left.

If the Simple FM tab does not appear in Waveform Creator,
a breakpoint in the SimpleFM.cs file needs to be set to begin
debugging. The code below illustrates where to place the
breakpoint. Once set, execute the code in the debugger by
pressing F5. Waveform Creator will load and execute the
SimpleFM code and then stop at the breakpoint. You may
press F10 to step over each line or Press F5 to continue
executing the code.

Figure 6. First pass property grid for Simple FM plug-in.

The appearance of the property grid is rather basic because it
includes several defaults:

•	 All the properties have been placed in a “miscellaneous”
category.

•	 The property name displayed in the list is set to the prop-
erty’s internal variable name.

•	 The descriptive text in the help box at the bottom is set to
the selected property’s internal variable name.

•	 Property grids show property values in bold when they are
not equal to the specified default value. Since the default
value for each of these properties has not yet been speci-
fied, zero is assumed to be the default value, and hence all
the non-zero property values are bold.

•	 The name variable is shown as “read only” (greyed out)
because only its get method is public.

•	 All of these can be adjusted by adding attributes to the
class definition, as we illustrate below.

7

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agilent.WaveformCreator.Core.Interfaces;
using MathNet.Numerics;
using System.ComponentModel;

namespace MyWaveform
{
 public class SimpleFM : IPlugInSegmentBuilder
 {
 [DisplayName("Modulation Frequency (Hz)")]
 [Category("FM")]
 [Description("This sets the frequency of the sinusoidal single tone FM. Range is 0

to 1.0 GHz")]
 [DefaultValue(1000000.0)]
 public double Fm { get; set; }

 [DisplayName("Modulation index (unitless)")]
 [Category("FM")]
 [Description("This sets the modulation index of the FM. Range is 0 to 10.0")]
 [DefaultValue(0.5)]
 public double modIndex { get; set; }

 [DisplayName("Minimum samples (unitless)")]
 [Category("Waveform")]
 [Description("This sets a lower limit to the number of samples in the output wave-

form (useful when working with 89601B)")]
 [DefaultValue(65536)]
 public int minSamples { get; set; }

 public SimpleFM()
 {
 Name = "Simple FM";
 Fm = 1000000.0;
 modIndex = 0.5;
 minSamples = 65536;
 }

			 public double BuildWaveform(double targetSampleRate, ISegmentDataFileBuilder raw-
DataFile)

 {
 Complex[] signal = new Complex[1000];
 rawDataFile.Write(signal);

 return 1.0 / targetSampleRate;
 }

 [Browsable(false)]
 public string Name { get; private set; }
 }
}

Once you have confirmed that you have functional plug-in code, exit Waveform Creator normally. This will, in turn, cause VS2010
to exit debugging so that you can continue with code development. The next step is to add attributes to the class definition as
shown below:

8

When we build the decorated class and re-run Waveform
Center, we can see the effect of these changes on the seg-
ment property grid.

Figure 7. Final version of property grid for Simple FM plug-in.

These property decorations have the following effects:

Disp layName This allows you to define a more “friendly” description of the property, independent of the underlying
property’s internal variable name.

Category This allows you to gather the properties into named groups according to their purpose; mainly for usability
reasons.

Descr ip t ion This allows you to define context sensitive help text that will be displayed whenever the associated
property is selected.

Defau l tVa lue This allows you to tell the PropertyGrid what value should be regarded as the default so that nondefault
values can be highlighted in bold font.
NOTE: This does not set the property variable to the default value; if non-zero property defaults are
required, they must be explicitly set, either by a class constructor or after object instantiation. In this
example we have already defined a class constructor to assign default values to the properties.

Browseab le
This allows you to control whether a class property is shown in the property grid. In this example we
have selected [Browseable(false)] for the Name property because the value of this property is more
appropriately displayed as a label on the segment library tab.

Unlike Waveform Center’s native property grids which can
invoke Agilent proprietary units conversion code, the user
defined plug-in’s property grid can only handle basic data
types such as int, double, string etc. To keep this tutorial
example focused on the essentials we have chosen to make
the property units implicit, but you may wish to implement
more sophisticated units parsing based on string parameters.
At this point the framework programming is complete; all that
remains is to implement the FM signal generation code, so
exit Waveform Center normally to exit debugging an return to
source development, then add the FM code.

Summary
Waveform Creator provides a simple, yet flexible environment
to create customized digitally modulated signals for radar,
military radios and other similar applications. The ability to
create your own custom waveform plug-ins, as illustrated in
this application note, greatly enhances Waveform Creator’s
capabilities beyond those provided with the core software.
By integrating your own custom waveforms with Waveform
Creator’s core features, the types of signals you can create
are limited only by your imagination.

9

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Agilent.WaveformCreator.Core.Interfaces;
using MathNet.Numerics;
using System.ComponentModel;

namespace MyWaveform
{
 public class SimpleFM : IPlugInSegmentBuilder
 {
 [DisplayName("Modulation Frequency (Hz)")]
 [Category("FM")]
 [Description("This sets the frequency of the sinusoidal single tone FM. Range is 0 to 1.0
GHz")]
 [DefaultValue(1000000.0)]
 public double Fm { get; set; }

 [DisplayName("Modulation index (unitless)")]
 [Category("FM")]
 [Description("This sets the modulation index of the FM. Range is 0 to 10.0")]
 [DefaultValue(0.5)]
 public double modIndex { get; set; }

 [DisplayName("Minimum samples (unitless)")]
 [Category("Waveform")]
 [Description("This sets a lower limit to the number of samples in the output waveform (useful
when working with 89601B)")]
 [DefaultValue(65536)]
 public int minSamples { get; set; }

 public SimpleFM()
 {
 Name = "Simple FM";
 Fm = 1000000.0;
 modIndex = 0.5;
 minSamples = 65536;
 }

public double BuildWaveform(double targetSampleRate, ISegmentDataFileBuilder rawDataFile)
 {
 int samplesPerCycle;
 int nSamples;
 int i;
 double time;
 double angle;
 double Fs;

 samplesPerCycle = (int)(targetSampleRate / Fm);

 if (samplesPerCycle > 100) samplesPerCycle = 100;
Fs = samplesPerCycle * Fm;

 nSamples = samplesPerCycle * (int)Math.Ceiling((decimal)minSamples / (decimal)samplesPer-
Cycle);

 Complex[] signal = new Complex[nSamples];

 for (i = 0; i < nSamples; i++)
 {
 time = i * (1.0 / Fs);
 angle = modIndex * Math.Sin(2.0 * Math.PI * Fm * time);
 signal[i] = Complex.FromRealImaginary(Math.Cos(angle), Math.Sin(angle));
 }

 rawDataFile.Write(signal);

 return 1.0 / Fs;

 }

 [Browsable(false)]
 public string Name { get; private set; }
 }
}

For your reference, the programming code is shown below with new lines emphasized in bold. The code can be downloaded
from the Knowledge Center at http://edocs.soco.agilent.com/x/PQsTDQ

The Modular Tangram

The four-sided geometric symbol that appears in this docu-
ment is called a tangram. The goal of this seven-piece puzzle
is to create identifiable shapes—from simple to complex.
As with a tangram, the possibilities may seem infinite as
you begin to create a new test system. With a set of clearly
defined elements—hardware, software—Agilent can help
you create the system you need, from simple to complex.

Agilent Solutions Partners
www.agilent.com/find/solutionspartners

www.agilent.com/quality

www.pxisa.org

www.axiestandard.org

myAgilent

Agilent Advantage Services
www.agilent.com/find/advantageservices

Three-Year Warranty
www.agilent.com/find/ThreeYearWarranty

www.agilent.com
www.agilent.com/find/modular
www.agilent.com/find/m9099

For more information on Agilent Technologies’ products,
applications or services, please contact your local Agilent office.
The complete list is available at: www.agilent.com/find/contactus

Americas
Canada			 (877) 894 4414	
Brazil 			 (11) 4197 3500
Mexico 		 01800 5064 800
United States		 (800) 829 4444

Asia Pacific
Australia 			 1 800 629 485
China			 800 810 0189
Hong Kong 		 800 938 693
India 				 1 800 112 929
Japan			 0120 (421) 345
Korea			 080 769 0800
Malaysia 			 1 800 888 848
Singapore 		 1 800 375 8100
Taiwan			 0800 047 866
Other AP Countries		 (65) 375 8100

Europe & Middle East
Belgium 			 32 (0) 2 404 93 40
Denmark			 45 70 13 15 15
Finland			 358 (0) 10 855 2100
France			 0825 010 700*
				 *0.125 €/minute
Germany			 49 (0) 7031 464 6333
Ireland			 1890 924 204
Israel				 972-3-9288-504/544
Italy				 39 02 92 60 8484
Netherlands		 31 (0) 20 547 2111
Spain				 34 (91) 631 3300
Sweden			 0200-88 22 55
United Kingdom		 44 (0) 118 9276201
For other unlisted Countries:	 www.agilent.com/find/contactus
(BP-3-1-13)

Product specifications and descriptions in this document subject
to change without notice.

© Agilent Technologies, Inc. 2013
Printed in USA, September 30, 2013
5991-3203EN

myAgilent
www.agilent.com/find/myagilent

Challenge the Boundaries of Test
Agilent Modular Products

