©

HEWLETT
PACKARD

APPLICATION NOTE 1003

B

Interfacmg 18 Segment Displays
to Microprocessors

INTRODUCTION

Over the past four years, the need for alphanumeric
displays has grown very rapidly due to the extensive use of
microprocessors in new system designs. The HDSP-6508
and HDSP-6300 alphanumeric displays were developed to
provide a low cost, easy-to-use alternative to 5x7 dot
matrix displays. These displays use an 18 segment display
font that includes a centered decimal point and colon for
increased readability. This font is capable of displaying
the 64 character ASCII subset (numbers, punctuation
symbols, and upper case alphabet) as well as many
special purpose symbols.. The HDSP-6504 and HDSP-
6508 are 3.81 mm (0.150”) red 4 or 8 character displaysina
dual-in-line package. The HDSP-6300 is a 3.56 mm
(0.140") red 8 character display in a dual-in-line package.
The HDSP-6508 has character-to-character spacing on
6.35 mm (0.250”) centers while the HDSP-6300 has
character-to-character spacing on 5.08 mm (0.200")
centers. Paralleling the development of these alpha-
numeric displays have been the introduction of several
new display interface circuits that simplify the use of the
18 segment display. These circuits include an ASClI to 18
segment decoder/driver and improved NPN Darlington
digit drivers that are designed to interface directly to 5 volt
digital logic. This Application Note deals with several
techniques to interface the 18 segment display to
microprocessor systems. Depending upon the overall
system configuration, microprocessor time available to
dedicate to display support, and the type of information to
be displayed, the system designer would choose the best
interface technique to drive an 18 segment display.

DISPLAY INTERFACE TECHNIQUES

This application note will deal with four different
techniques, as shown in Figure 1a-d, for interfacing the
HDSP-6508 and HDSP-6300 displays to microprocessor
systems.

1a. The REFRESH CONTROLLER interfaces the micro-
processor system to a multiplexed LED display. The
controller periodically interrupts the microprocessor
and after each interrupt, the microprocessor supplies
new display data for the next refresh cycle of the
display.

1b. The DECODED DATA CONTROLLER refreshes a
multiplexed LED display independently from the
microprocessor system. A local RAM stores decoded
display data. This data is continuously read from the
RAM and then used to refresh the display. Whenever
the display message is changed, the microprocessor
decodes each character in software and writes the
decoded data into the local RAM.

1c. The CODED DATA CONTROLLER also refreshes a
multiplexed LED display independently from the
microprocessor system. The local RAM stores ASCII
data which is continuously read from the RAM,
decoded, and used to refresh the display. The display
message is changed by writing new ASCI| characters
within the local RAM.

1d. The DISPLAY PROCESSOR CONTROLLER uses a
separate microprocessor to drive the LED display.
This microprocessor provides ASCII storage, ASCII
decode, and display refresh independently from the
main microprocessor system. Software within the
dedicated microprocessor provides many powerful-
features not available in the other controllers. The
main microprocessor updates the LED display by
sending new ASCII characters to the slave micro-
processor.

COMPARISON OF INTERFACE TECHNIQUES

The choice of a particular interface is an important consid-
eration because it affects the design of the entire micro-
processor system. Each interface requires one or more
memory or I/O addresses. These addresses are generated
by decoding the microprocessor address bus. The display
decoder can be located within the microprocessor
program or as circuitry within the display interface.
Location of the display decoder within the micro-
processor program gives the designer total control of the
display font within the program. This feature can be
particularly important if the display will be used to display
different languages and special graphics symbols. The
interface technique chosen may limit or interfere with
some programming techniques used in the rest of the
microprocessor program. For example, the use of an

430

SEGMENTED DISPLAYS

ADDRESS BUS r REFRESHCONTROLLER _1|
I I
: r==-1 ‘
| ! |
RAM®* ROM® LATCH DECODER SEGMENT !
| © II > orivers |
| |
< | L2 |
% DATA | !
8 BUS | |
g T DISPLAY |
& | |
e | N |
H
| =1 '
! ! w M o l
l LATCH [|| DECODER ||7 > orivers |
|
| | IS
|
! I
! |
interrupT REquesT | | 1oon e |
i cLocK |
*PROGRAM + ASCII LOOKUP TABLE | I
**SCRATCHPAD WITH OR [_l

WITHOUT DECODED
ASCII LOOKUP TABLE

Figure 1a. REFRESH CONTROLLER Display Interface

SEGMENTED DISPLAYS

______ CODED DATA CONTROLLER |
ADDRESSBUS | |
I I ; Mux |
Asch seament | |
} RAM |1 pecoper [~ DRIVERS | |
rames | | mome | =
' |
3 | |
2 DATA | |
&
g 8us | | DISPLAY l |
£ 1
g !
H : L~ !
I n N !
! DIGIT
| oecoven [privers — I,
|
! |
|
SYSTEMCLOCK |
| COUNTER |
— ! !
~ PROGRAM | |
*+ SCRATCHPAD L 3

Figure 1c. CODED DATA CONTROLLER Display Interface

SEGMENTED DISPLAYS

ADDRESS BUS

Py

SEGMENT

RAM Rom DRIVERS

RAM

DATA

r]
1 I
! |
| |
| |
| |
| |
BUS l :
DISPLAY

, =]
|

| i
| |
| |
| |
| |
| |
| |
t |
1 i
| |
L J

MICROPROCESSOR

N
N DIGIT
I DECODER .'L’ DRIVERS

SYSTEM CLOCK

COUNTER

*PROGRAM + ASCII
LOOKUP TABLE
**SCRATCHPAD

Figure 1b. DECODED DATA CONTROLLER Display Interface

SEGMENTED DISPLAYS
r DISPLAY PROCESSOR CONTROLLER —‘I
ADDRESS BUS | |
T |
SEGMENT
l l 1] orivens :
| |
© rames | | rome | | DISPLAY |
g | =
3 || sLave |
8 DATA | M"ggg |
g BUS | | esoon DIGIT |
= f DRIVERS

| l
! |
| N i

|
| Mo |
I | Lt o peenten ‘

|
| |

*PROGRAM |
**SCRATCHPAD L |

Figure 1d. DISPLAY PROCESSOR CONTROLLER Display
Interface

interrupt may restrict the use of some programming
techniques used in the interruptable portions of the
microprocessor program.

The REFRESH CONTROLLER requires continuous inter-
action from the microprocessor system. Since the micro-
processor actively strobes the LED display, the display
interface circuitry is reduced. Generally, this technique
provides the lowest hardware cost for any given display
length. The display decoder can be located either within
the microprocessor program or as circuitry within the
interface. Display strobing is accomplished through use
of the microprocessor interrupt circuitry. Demands upon
microprocessor time are directly proportional to display
length.

431

The DECODED DATA CONTROLLER and CODED DATA
CONTROLLER require microprocessor interaction only
when the display message is changed. Both techniques
employ a local RAM memory that is continuously scanned
by the display interface electronics. For the DECODED
DATA CONTROLLER, the display decoder is located
within the microprocessor software and the local RAM
stores decoded display data. The CODED DATA
CONTROLLER includes the display decoder within the
display interface circuitry and the local RAM stores ASClI
data. Since ASCII data is more compact than decoded
display data, the CODED DATA CONTROLLER uses a
smaller RAM than the DECODED DATA CONTROLLER.
Both techniques allow the microprocessor to individually

NOTES

x
2
—
<T
=]
-
<T

change each display character by amemory or I/0 write to
a specific display address. These interface techniques can
accept new data at a very high rate.

The DISPLAY PROCESSOR CONTROLLER, like the
previously defined CODED and DECODED DATA
CONTROLLERS, requires microprocessor interaction
only when the display message is changed. By using a
dedicated microprocessor, the DISPLAY PROCESSOR
CONTROLLER provides many additional display fea-
tures. These features include multiple entry modes, a
blinking cursor, editing commands, and a data output
function. The software with the DISPLAY PROCESSOR
CONTROLLER further reduces microprocessor inter-
action by providing more sophisticated data entry modes
compared to the RAM entry mode provided by the
DECODED DATA and CODED DATA CONTROLLERS.
The display decoder can either be designed into the
dedicated display microprocessor or can be located
within a separate PROM. The use of a PROM allows the
user to provide a special character font with additional
circuitry. The DISPLAY PROCESSOR CONTROLLER
does not allow as high a data entry rate as either the
DECODED DATA or CODED DATA CONTROLLERS.

MICROPROCESSOR OPERATION

In order to effectively utilize the interface techniques out-
lined in the following sections, an understanding of micro-
processor fundamentals is required. A brief description of
microprocessor fundamentals is included in the following
section. A microprocessor system usually consists of a
microprocessor, ROM memory, RAM memory, and a
specific 1/0 interface as outline in Figure 2. The micro-
processor performs the desired system function by
executing a program stored within the ROM. The RAM
memory provides temporary storage for the micro-
processor system. The |/O interface consists of circuitry
that is used as an input to the system or as an output from
the system. The microprocessor interfaces to this system

through an address bus, data bus, and control bus. The
address bus consists of several outputs (Ao, A1,...An) from
the microprocessor which collectively specify a binary
number. This number or “address” uniquely specifies
each word in the ROM memory, RAM memory, and |/O
interface. The data bus serves as an input to the
microprocessor during a memory or input read and as an
output from the microprocessor during a memory or
output write. The control bus provides the required timing
and signals to the microprocessor system to distinguish a
memory read from a memory write, and in some systems
an 1/0 read from an I/O write. These control lines and the
timing between the address bus, data bus, and control bus
vary for different microprocessors.

The address, data, and control buses provide the flow of
instructions and data into the microprocesor. Program
execution consists of a series of memory reads
(instruction fetches) which are sometimes followed by a
memory read or write (instruction execution). The
microprocessor performs a memory read by outputting
the memory address of the word to be read on the address
bus. This address uniquely specifies a word within the
memory system. The microprocessor also outputs a
signal on the control bus, which instructs the memory
system to perform a memory read. The address selects
one memory element, either RAM or ROM, within the
memory system. Then, the desired word within the
selected memory element is gated on the data bus by the
read signal. Meanwhile, the unselected memory elements
tristate their output lines so that only the selected memory
element is active on the data bus. After sufficient delay, the
microprocessor reads the word that appears on the data
bus. Similarly, for a memory write, the microprocessor
outputs the memory address of the word to be written on
the address bus. After sufficient delay, the micro-
processor outputs a signal on the control bus, which
instructs the memory system to perform a memory write.

ADDRESS BUS, CONTROL BUS

AR VERY

iy

MICRO-

INPUT
PORT cLock [PROCESSOR

RAM ROM

OUTPUT OUTPUT
PORT

&

DATA BUS

Figure 2. Block Diagram of a Typical Microprocessor System

432

The microprocessor also outputs the desired memory
word on the data bus. The address selects one RAM
memory element within the memory system. The write
signal causes the memory element to read the word on the
data bus and store it at the desired location. After the write

~cycle has been completed, the new word will have
replaced the previous word within the RAM memory.
During the memory write, outputs from the unselected
memory elements remain tristated so that only the
microprocessor is active on the data bus. These control
lines and the timing for the address bus, data bus, and
control bus vary for different microprocessors.

Some microprocessors, such as the Motorola 6800 micro-
processor family, handle memory and 1/O in exactly the
same way. Memory and 1/0 occupy a common address
space and are accessed by the same instructions. With
this type of microprocessor, the hardware decoding of the
address bus determines whether the read or write is to a
memory or I/0 element. Other microprocessors, such as
the Intel 8080A, Intel 8085A, and the Zilog Z-80 have
separate address spaces for memory and |/O.. These
microprocessors use different instructions for a memory
access or an I/0 access and provide signals on the control
bus to distinguish between memory and 1/O. One
advantage of this approach is that the I/0 address space
can be made smaller to simplify device decoding.
However, the I/0 instructions that are available are usually
not as powerful as the memory reference instructions. Of
course, the user can always locate specific 1/0 devices
within the memory address space through proper
decoding of the address and control buses. This would
allow these 1/0 devices to be accessed with memory
reference instructions.

The 6800 microprocessor family has a 16 line address bus,
8 line data bus, and a control bus that includes the signals
VMA (Valid Memory Address), R/W (Read/Write), DBE
(Data Bus Enable), and clock signals ¢1 and ¢2. R/W
specifies either a memory read or write while VMA is used
in conjunction with R/W to specify a valid memory
address. DBE gates the internal data bus of the 6800 to the
external data bus. In many applications, DBE is connected
to ¢2. Additional data hold time, tH, can be achieved by
delaying ¢2 to the microprocessor or by extending DBE
beyond the falling edge of ¢2. The timing between the
address bus, data bus, VMA, and R/W for a memory write
is shown in Figure 3.

For the 8080A microprocessor, the address bus consists
of 16 lines, the data bus consists of 8 lines, and the control
bus consists of several lines including DBIN (Data Bus In),
WR (Write), SYNC (Synchronizing Signal), READY, and
clock signals ¢1 and ¢2. DBIN and WR are used to specify
a read or write operation. The 8080A microprocessor
distinguishes memory from I/0 through the use of a status
word that precedes every machine cycle. When SYNC is
high, the status word should be loaded into an octal latch
on the positive edge of ¢1. The outputs from the latch can
then be decoded to specify whether the machinecycleisa
memory write, memory read, I/O write, or 1/O read. The
Intel 8228 or 8238 System Controller provides this status
latch and additionally encodes the outputs of the status
latch with DBIN and WR to generate four timing signals
MEM R (Memory Read), MEM W (Memory Write), I/0 R
(1/0 Read), and I/0 W (1/0 Write). However, the 8228 and
8238 do not provide the outputs of the status latch. The
timing between the address bus, data bus, WR, and SYNC

433

MEMORY WRITE BUS TIMING (DBE =¢,)

b teve gl

. ——l I.____
i tur |
1 |

2 | |
i teH o i

ADDRESS BUS | I VALID ADDRESS ! :

(A5 =Ag | —L

e tap —>{— % —

w1

DATA BUS
(0; - Dg)

|

!

|

|
| | :
MEMORY WRITE BUS TIMING (DBE # ¢5) | |
|
|

|

L

| |

|

| | I

| [topw—te—tp—> ty T

i

?2 : |

e —————
e
e

teH +

DBE

DATA BUS

(D, — D) I VALID DATA

|
|
|
:‘"Dow"i —> e

MINIMUM TIMES (nS)
t [taH | 2 | W

6800 MICROPROCESSOR oy
(MAX) |
6800, tayc = 1000 226 630 30 225 | 10

68A00,tcyc= 666 | 200 | 420 | 30 | 80 | 10

68800, 1oy = 500 60 | 200 | 30 | 60 | 10

t1(MIN) =t (MIN) — t5(MAX)

MIN) = gy (MIN) — tppy(MAX)

From MOTOROLA SEMICONDUCTOR MC6800 Data Sheet
(Ds9471), 1978

Figure 3. Memory Write Timing for the Motorola 6800
Microprocessor Family.

for both a memory write and an 1/O write is shown in
Figure 4. The 8080A also provides aninput, READY, which
allows the memory system to extend the time the address
and data bus is valid by integral clock cycles.

REFRESH CONTROLLERS

Figure 5 shows a REFRESH CONTROLLER for a 16
character 18 segment alphanumeric display. The circuit
operates by interrupting the microprocessor at a 1600 Hz
rate. Following each interrupt, the microprocessor
responds by outputting a new ASCII character to the
Texas Instruments AC5947 ASCIl to 18 Segment
Decoder/Driver and a new digit word to the 74LS174. The
character font for the AC5947 is shown in Figure 6. The
outputs of the 74LS174 are decoded such that digit word
0016 turns the leftmost display character on, digit word
OF 16 turns the rightmost display character on, and digit
word 1F1e turns all digits off. The interface can be
expanded to 24 characters with an additional Signetics
NES590 driver. This change would also require modifi-
cations in If peak, and the interrupt rate.

NOTES

x
(==}
—
<T
=
—
a-
a-
<<

8080 MICROPROCESSOR MINIMUM TIMES {nS)

. WITH 8228 CLOCK taw WA tow Wwo
cY >

MEMORY AND /0 WRITE BUS TIMING
8080A, toy = 480 740 90 230 20
l I 8080A-2,tcy = 380 560 80 140 80

1 I | l
8080A-1, tcy = 320 470 70 10 70

= typ = tp3t10

- | taw = 2tcy — tpg — [140(A), 130(A-2), 110(A-1)]
2 | l | I I I
i wa
|

|

'
VALID ADDRESS

'

tow = tcy —tpz — [170(A), 170(A~2), 160(A-1)]

(A15 - AO) From INTEL Component Data Catalog, 1978

I
I
ADDRESS BUS I |
|
T

NOTE 1: Status Word should be loaded
into an octal latch when
SYNC = 1 on positive edge
of ¢,

I
l
|
|
.

1---rt--
3
>
A

NOTE 1 NOTE 2: Additional wait cycles can be

|
| inserted here. A wait cycle is
DATA BUS T .] added by forcing READY
(D, - D) VALID STATUS VALIDDATA |
L

low prior to the falling edge
t
f—ton —>

of 472 during the clock cycle
— preceeding the falling edge of
wo WR

Figure 4. Memory and 1/0 Write Timing for the Intel 8080A Microprocessor Family

A, | {4,
Az - A2
Hs=
¢
i 2 1 1 °
o, 12 [1o,
DATA D, 13 HDSP 6508 | 1" HDspesos
BUS Dy :: - 2
Og 1 m
17
g 2 6,
H Hw
A EFT - RIGHT
ADDRESS 0 ! v !
BUS Ay ;l(mU
. — x
2
= Ve ; -
1/0 WRITE = L
74L504 80808 P —{ op
8080A He . R
3 |21]6 iois|izfia]iz |3 J21]e [10]1s|izfiafia
r 45|67 |s frofn1]s: 4 |5 {6 {7]9 Jof11]12
o 03 03 030, 05060, [Qg Qy Q3 03 Q4 Q5 Q50|
NES90 NESS0
AgAq Az p CECIR Ao A Azp CECIR
6800 1|2 {3 |13f1af1s 1 |2 |3 hajufis
Vcc = =
L :
=) 1f?
%2 4 5
= Y0800 6 ;z ;g 7 741504
220K ETH o po T3 1 2
13 12
5D 5
IRQ 78L8174 L

27K _E

.0033uF

Figure 5. 6800 or 8080A Microprocessor Interface to the HDSP-6508 REFRESH CONTROLLER Utilizing the Texas Instruments
AC5947 ASCII to 18 Segment Decoder/Driver

434

Dy 0 0 0 0 0 1 1 1 1 1 1 1

BITS D, 0 0 0 1 1 0 0 0 0 1 1 1

D, 0 0 1 0 1 0 0 1 1 0 0 1

Dy 0 1 0 0 1 0 1 0 1 0 1 0

Dg Dg D, | HEX 0 1 2 4 7 8 9 A 8 c D E
I 1 + —

01 0 2 |(space)| | ! 7\K / .

R

10 0 AEHE

—

Eml_ﬂEEmdodo

T
4

il
T

mr‘ILLJH-{u--oo

o s | PIEIR

NSRBI

N
[
AOUIN\ =] ===-

<D
B9]/ -
GiHI|J|KILIMIN
WIX|Y[Z|[]

Figure 6. 18 Segment Display Font for the Texas Instrumenis AC5%947 ASCII to 18 Segment Decoder/Driver

A 6800 microprocessor program that interfaces to this
REFRESH controller is shown in Figure 7. Following each
interrupt, the program “RFRSH” is executed. The program
uses a scratch pad register “POINT” that points to the
location within a 16 byte ASCll message of the next ASCII
character to be stored inthe display interface. The scratch
pad register “DIGIT” contains the next digit word to be
loaded into the display interface. The program interfaces
to the circuit through two memory or I/O addresses. A
memory write to address “SEG” writes a six bit word into
the AC5947, and a memory write to address “DIG” writes a
five bit word into the 74LS174. To prevent undesirable
ghosting, the digit drivers are turned off prior to loading
the next ASCIl character into the AC5947. After sufficient

delay, the next digit is turned on. Registers “POINT” and
“DIGIT” are then updated by the program. Following
execution of the “RTI” instruction, execution of the main
program is resumed. A similar program written for an
8080A microprocessor is shown in Figure 8. The 6800
microprocessor program shown in Figure 7 operated with
a 1 MHz clock requires 0.11% + 0.72n% of the available
microprocessor time to refresh the display at a 100 Hz
refresh rate, where n is the display length. The 8080A
microprocessor program shown in Figure 8 when
operated with a 2 MHz clock requires 0.31% + 0.96n% of
the available microprocessor time to refresh the display at
a 100 Hz refresh rate, where n is the display length. For
example, the 16 character display shown in Figure 5

DIG « 1Fy
TURN OFF DIGIT DRIVERS

I}

UPDATE SEGMENT DRIVERS

SEG « (POINT) |

'

A< DIGIT

LAST DIGIT
(LOOP1)

DIGIT < DIGIT + 1 I DIGIT <0]

i !

POINT < POINT - 15
POINT « POINT +1 I POINT TO FIRST ASCli CHARACTER I

! !

LOC __OBJECT CODE SOURCE STATEMENTS
BF04 SEG EQU SBF04 |
BFOS DIG EQU $BF0S
0000 0003 POINT FDB DATA
0002 00 DIGIT FCB 0
0003 DATA RMB 16
0400 ORG $0400
0400 DE 00 RFRSH LDX D POINT
0402 E6 00 LDAB X0
0404 86 IF LDAA 1SIF
0406 B7 BFO05 STAA EDIG
0409 F7 BF04 STAB ESEG
040C 96 02 LDAA DDIGIT
040E 81 OF CMPA LIS
0410 27 0A BEQ LOOPI
0412 7C 0002 INC E,DIGIT
0415 08 INX
0416 B7 BFOS STAA EDIG
0419 DF 00 STX D,POINT
041B 3B RTI
041C 7F 0002 LOOPI CLR EDIGIT
041F Fe6 0001 LDAB EPOINT+1
0422 B7 BFOS STAA EDIG
0425 €O OF SUBB LIS
0427 D7 01 STAB D,POINT+]
0429 24 03 BCC LOOP2
042B 7A 0000 DEC E,POINT
042E 3B LOOP2 RTI

DIG <A
TURN ON SEGMENT DRIVERS.

1G <
[TURN ON SEGMENT DRIVERS I

)
Ceerm)

Figure 7. 6800 Microprocessor Program and Flowchart that Interfaces to the REFRESH CONTROLLER Shown in Figure 5

NOTES

=
=
—
<C
=
-
(-
a.
<

LOC__ OBJECT CODE SOURCE STATEMENTS l STORE W ACHINE STATUS ON]
001C SEG EQU 001CH
001D DIG EQU 001DH ‘
ORG OE00OH
E000 03 EO POINT DW DATA TURN OFF men ‘bRIVERS
E002 00 DIGIT DB 00H
E003 00 DATA DS 16 ‘
ORG OE400H SEG=-(POINT)

E400 F5 RFRSH PUSH PSW UPDATE SEGMENT DRIVERS
E401 ES PUSH H ‘
E402 2A 0OEO LHLD POINT
5405 %E IF MVI A,IFH [DiG=-DIG]

407 D3 1D oUT DIG
Ed0o 7B MOV AM TURN ON DIGIT DRIVERS
E40A D3 1IC OUT SEG
E40C 3A 02E0 LDA DIGIT
E40F D3 1D OUT DIG LAST DIGIT
E4l1l FE OF [¢3] 15
E413 CA 21E4 JZ LooPI {LooPm
E416 3C INR A
E417 32 02E0 STA DIGIT
E41A 23 INX DIGIT=DIGIT +1 DIGIT=0]
E41B 22 00E0 LOOP2 SHLD POINT
E41E El POP H
E4IF Fl POP PSW {
E420 €9 RET
E421 3E 00 LOOPI MVI AQ [POINT=-POINT + 1 1 [POINT >-POINT - I
Fios 33 02E0 STA DIGIT POINT TO FIRST ASCII CHARACTER
E426 7D MOV AL L
E427 D6 OF suL 15 Y (LOOP2)
E429 6F MOV LA RESTORE MACHINE STATUS
E42A D2 1BE4 INC LOOP2 FROM STACK
E42D 25 DCR H
E42E C3 1BE4 IMP LOOP2

Figure 8. 8080A Microprocessor Program and Flowchart that Interfaces to the REFRESH CONTROLLER Shown in Figure 5

requires 11.6% of the 6800 microprocessor time or 15.7%
of the 8080A microprocessor time to refresh the display at
a 100 Hz refresh rate. Faster versions of the 6800 and
8080A microprocessors can reduce this microprocessor
time by 50%.

DECODED CONTROLLERS

Figure 9 shows a DECODED DATA CONTROLLER
designed for a 32 character 18 segment alphanumeric
display. To simplify the circuitry, the display is configured
as a 14segmentdisplay with decimal point and colon. This
allows each display character to be specified by two 8 bit
words. One possible display font is shown in Figure 10.
The Motorola 6810 RAM stores 64 bytes of display data
that are continually read and displayed. The display data
is organized within the RAM such that addresses As, As,
A3, A2, and A1 specify the desired character and address
Ao differentiates between the two words of display data for
each character. The display data is formatted such that
word 0 (D7—Do) is decoded as Gz, G1, F, E, D, C,B,and A;
and word 1 (D7—Do) is decoded as COLON, DP, M, L, K, J,
|, and H. The display data is coded low true such that a low
output turns the appropriate segment on. Strobing of the
display is accomplished with the 74LS14 oscillator and
74LS393 counter. The counter continuously reads display
data from the RAM and enables the appropriate digit
driver. The time allotted to each digit is broken into four
segments. During the first segment of time, the display is
turned off and work 0 is read from the RAM and stored in
the 74LS273 octal register. During the next three
segments of time, word 1 is read from the RAM and the
display is turned on. Thus, the display duty factoris (1/32)

436

(3/4) or 1/42.6. For values of R and C specified, the display
is strobed at a 130 Hz refresh rate.

Data is entered into the RAM from the address and data
bus of the _microprocessor via two control lines, Chip

Select and Write. When Chip Select goes low, the address
generated by the counter is disabled and the micro-
processor address and data bus_is gated to the RAM.
Then, after sufficient delay, the Write input is pulsed,
which stores the data within the RAM. The data entry
timing for the 18 segment DECODED DATA CON-.
TROLLER is shown in Figure 11. Because of the
requirement that the address inputs of the 6810 RAM must
be stable prior to the falling edge of Write, Chip Select
should go low for time tcw prior to the falling edge of
Write. To guarantee that the address and data inputs of the
RAM remain stable until after Write goes high, Chip Select
should remain low for time tcH following the rising edge of
Write. This requirement for two separate timing signals is
also required for the CODED DATA CONTROLLER
shown in Figure 15. Because this interface timing is
somewhat more difficult than the previously described
circuits, the following methods are presented for
interfacing to commonly used microprocessors.

Interface to the 6800 microprocessor family is accom-
plished by NANDing together VMA and some specified
combination of high order address lines to generate Chip
Select and using ¢2 to generate Write.

For the 8080A and 8085A microprocessor families, the
limited flexibility of the output instruction requires that the
18 segment DECODED DATA CONTROLLER must be
addressed as memory instead of 1/0. The 8080A micro-

Le¥Y

I 333333
7415204 {) S3 <: S$$SSSSS 20k Vee .
39S$S 35S 115 102 (TYP) ;
. 3 27k (TYP) .
0y 8A gy AAMA 16 AMA coL -] -
o, L] 5 AN 13 ISR
6 =17 h Wy) PEAAAET] 1 N B
05 6a e MW A [- = H
paTA | D, ALY PN £ A 10] uLn2033 s},] a]
8us | p, 8lea avp2 AAA 8 7 a—Y « o]
&) 5 m VWA 5 VWA—5 r—w
o, 3 3y A 3 -
2 0 6 W 3 2 20 u
O 212 Ve A~ MA— H B
Loy Yy AAA- =
1 19 v, - HDSP-6508 HDSP-6508 HDSP.6508 nISP-6508
ec [v
el 15
Vee Ve ,§<,<><;<, 16 2] w = n]
Mcmes10 | 24 Jo bS »;»:»:»:») 14 A 23] A E = =
A 13 BT w2 T3 P AL EPYPRE 13 12 19 ‘;]
a n 22} M Ei kL] 16_AAA 1 10] uinzoss fo 22 H
!) me re N I TV 8 7 2] ® = =
ADDRESS| Az A2 o2 [sa VA —AAA ¢ u [
aus | A 7 20} o3 KE] g TENVWWED 6 A uly H
3 5 19 6 8 sa N v 12 LEFT - = RIGHT
A 3 w1 %k 7] @ Wy 2 2 a—4o,]
LAs 1% o5 | 1® 2k AMA s
5146 s 2 M- =
m o7 : 1 10 MY Vee 15
cs —p 74L5213 16 1 7
AA
12 &5 VWV 3 1 — 1
ety e 13 14 AA—28 ¢ a .
=3 " PEVEEE] S]]
13 ULN2033 A/ 1
cs 10 PEAAAERT
V-Ecs VWA 2 4 11 2 3 4 6 7 8 2345 7 8|1 2345 7 8
@ T po 3]21[e 13 [3]21]6 [io]1s]r2[1afiz]3T21f6 Jiof1sr2]1af3 3 [21]e Jrofisfizfiafas
T
‘]—- 5 18]17{16]15]14[13[12]11 18117 [16]15114[13]12{ 11 18[17[16[15[14[13}12[11 18{17[16[15]14][13]12{ 11
= Vg 10! ||
: ULN 2815 ULN 2815 T ULN 2815 ULN 2815
9
Al -
74L814 _‘ ‘-‘
= 7 [2[3]e[5]e[7]8 [1[z|z]els[6]7]e [1]z]3]a]s5]e|7 |8 [1]z[3]s]5]6]7 e
2
alsle|7]o0l1nf12 Jals |6 |7 o Jro]1jrz fa]s]e |7]e jro]n1f12 Ja]s 6|7]9 fro]11f1z
v Jefooatazasasasasar] fooatozasasasosar) faoatazesasasaser] [00070z0304 050607
3]119 |7 3 s 7418259 74L5259 7415259 7415259
Y AL A ABcDGE || A a [asc L
O D & Tuse = 1[2]3]+ 2] Tfids 1 {2 [[iffialis 1|23 dPatis
easaan 382 14 = = = =
74,5393 14§12(10{6 |4 |2
B 741532
b1a a4
741514 1% | — 6
. 10,
cL 6
3900 10p)|
1
20,
28 o 0
2l9 9
L1 P laEnp L N0
20, —Ar Ld
Tk I 741832 7aL514 74LS14
— 13
741832
74L814
12 "
] 8 13
GENERAL INTERFACE 6800 MICROPROCESSOR INTERFACE 8080A MICROPROCESSOR INTERFACE (UTILIZING 8238 SYSTEM CONTROLLER)
1
wiTE L VA : fs : ®
WRITE 2 . ° Arg z 741520
A
1
741832 A 3 4 " @
CHIP SELECT o " 51 7aLs30
741500 6 A 10
5 1
A n Ay 2y a LN PR @
A2 12 4 6 RO 7. 3 —d
2 s MEMW = 2 2 Y K
i 220 MC3459 FROM INTEL 8238 SYSTEM CONTROLLER o
oy 741500 7815113 745113
T0 6800
M 1 (TTU

Figure 9. 6800, 8080A, and General Interface to the HDSP-6508 DECODED DATA CONTROLLER

APPLICATION

NOTES

FROM INTEL 8224 CLOCK GENERATOR

Dy 0 0 0 0 1 1 1 1 1

BITS D; 0 0 0 1 [\ [1 1 1

D, 0 0 1 1 1 1 0 0 1

Dy 0 1 0 1 [1 0 1 0

Dg Dg D4 | HEX 0 1 2 7 A B [4 D E
0 1 0 2 (space) _‘ I | x + Y —_

0 1 1 3Z’

100 AEH

| m W]e] ==
—|g| Clw|]e---
C MV XK |a]-=--
NRIIOEEE
i inll

AU

10 1 SPB

<O e |-ee-
NI
N
|
O[N] ----

x| T|m[~]-]e---

KIL|M|N
<IN\ |2

Figure 10. One Possible 16 Segment Display Font (14 Segments Plus Decimal Pointand Colon) for the DECODED DATA CONTROLLER

Shown in Figure 9.

processor requires an external status latch to hold status
information provided during program execution. This

status latch function can be implemented with an octal

register such as the Intel 8212 or 74LS273. A Memory
Write signal can be generated by NORing together all
outputs of this status latch. This signal can then be
NANDed with some specified combination of high order
address lines to generate Chip Select. The 8080A WR
output can then be connected to Write. The Intel 8238
System Controller, which is commonly used with the
8080A microprocessor, prevents direct access to the
outputs of the status latch. An example of an interfacing to

a system utilizing the 8238 is illustrated in Figure 9. MEM
W from the 8238 is inverted and then NANDed with some
specified combination of high order address lines to
generate Chip Select. The 74LS113 generates Write from
the microprocessor clock, ¢2 (TTL).

Interface to the 8085A microprocessor_family can be
accomplished by inverting the 1/0O/M output and
NANDing the resulting signal with the So outputand some
specified combination of high order address lines to
generate Chip Select. The WR output from the
microprocessor is connected directly to Write.

GENERAL INTERFACE

twe

ADDRESS __){

tew twg —a] E_

le—— taw —— — tcH -
—
CHIP SELECT -\L

tow tDH —»
DATA X ‘)C
twe
T\ —

6800 MICROPROCESSOR INTERFACE

ADDRESS l_lL

1

| g

- :

! il

(P SETEGT) l I |
|

@(vWTE) _‘__J_——

VALID ADDRESS | I
L

PARAMETER SYMBOL MIN.
WRITE CYCLE twe 425ns
WRITE DELAY taw 65ns
CHIP ENABLE TO WRITE tow 65ns
DATA SETUP tow 210ns
DATA HOLD ton 3Bns
WRITE PULSE twp 325ns
WRITE RECOVERY twR 25ns
CHIP ENABLE HOLD ten 3Bns

8080A MICROPROCESSOR INTERFACE
1
¢y (TTL) : | |
FROM 8224 | |
| —
T
VALID ADDRESS | lJ
L

1
|
T f T
l
|
|

ADDRESS l

DATA | vALID DATA |

| [

|
MEMW (CHIP SELECT) | |
FROM 8238 |

Figure 11. Data Entry Timing for the DECODED DATA CONTROLLER Shown in Figure 9

438

LOC _ OBJECT CODE SOURCE STATEMENTS
BF0O DSPLY EQU $BFO0
0600 DECDR EQU $0600

0000 0006 AscCll FDB MESSGE

0002 BF00 PADI FDB DSPLY

0004 0600 PAD2 FDB DECDR

0006 MESSGE RMB 32

0400 ORG $0400

0400 CE BF00 LOAD LDX I,DSPLY

0403 DF 02 STX DPADI

0405 CE 0600 LDX LDECDR

0408 DF 04 STX DPAD2

040A DE 00 LOOP! LDX D,ASCll

040C A6 00 LDAA X0

040E 08 INX

040F DF 00 STX D,ASCIl

0411 48 ASL A

0412 97 05 STAA DPAD2+]

0414 DE 04 LDX DPAD2

0416 A6 00 LDAA X0

0418 E6 01 LDAB X

041A DE 02 LDX D,PADI

041C A7 00 STAA X0

041E 08 INX

041F E7 00 STAB X0

0421 08 INX

0422 DF 02 STX D,PADI

0424 8C BF40 CPX L,DSPLY+64

0427 26 El BNE LOOP!1

0429 39 RTS

V

PAD2 «~ ADDRESS OF DECODER

)

A« (AsCIl)
READ ASCII CHARACTER

!

|
l
|
l

ASCH < ASCH +1

PAD1 < ADDRESS OF DISPLAY J

!

PAD2 < PAD2 + 2xA
CALCULATE ADDRESS OF
ASCII CHARACTER

l NOT DONE

l

STORE FIRST WORD INTO DISPLAY

(PAD1) < (PAD2)

)

i

PAD2 < PAD2 + 1

i

ISTORE SECOND WORD INTO DISPLAY

(PAD1) « (PAD2)

]
|
|

PAD1 = ADDRESS OF
DISPLAY + 647

YES

(LOOP1)

Figure 12. 6800 Microprocessor Program and Flowchart that Interfaces to the DECODED DATA CONTROLLER Shown in Figure 9

The simplest interface to the Z-80 microprocessor family
is accomplished by addressing the 18 segment DE-
CODED DATA CONTROLLER as I/0 instead of memory.
An example of this interface is shown in Figure 15. The
IORQ output is inverted and NANDed with some specified
combination of address lines to generate Chip Select. The
74LS113 circuit generates Write from the inverted micro-
processor clock ¢.

A 6800 microprocessor program that interfaces to the 18
segment DECODED DATA CONTROLLER is shown in
Figure 12. This program decodes 32 ASCllI characters and
stores the resulting decoded display data within the
display. The scratch pad register “ASCII” points to the
location of the next ASCII character to be decoded. The
program reads the first ASCII character, increments the
point, “ASCII,” and then looks up two words of display
data within the 64 character ASCIl look-up table
“DECDR.” These words of display data are then stored at
the two addresses for the leftmost display location.
Subsequent ASCII characters are decoded, and stored at
the appropriate address within the display until ail 32
characters have been decoded. After the program is
finished, the pointer “ASCII” will have been incremented
by 32. This program requires 2.4 ms for a 1 MHz clock to
decode and load 32 ASCII characters into the 18 segment

439

DECODED DATA CONTROLLER. The corresponding
8080A microprocessor program is shown in Figure 13.
This program requires 1.4 ms for a2 MHz clock to decode
and load 32 ASCII characters into the 18 segment
DECODED DATA CONTROLLER.

The 64 character ASCII font shown in Figure 10 can be
generated using the table shown in Figure 14. This ASCII
decoder uses two 8 bit words to represent each ASCII
character. The format of the decoder is consistent with
either the 6800 microprocessor program shown in Figure
12 or the 8080A microprocessor program shown in Figure
13.

CODED DATA CONTROLLERS

Figure 15 shows a CODED DATA CONTROLLER
designed for a 32 character 18 segment alphanumeric
display. Operation of this circuit is similar to the
DECODED DATA CONTROLLER shown in Figure 9
except that the Motorola 6810 RAM stores 32 six bit ASCII
words and the Texas Instruments AC5947 decodes this
ASCII data into 18 segment display data. The resulting
display font is shown in Figure 6. Strobing of the display is
accomplished by the 74LS14 oscillator and 74LS393
counter. Because the long propagation delay through the
AC5947 tends to cause display ghosting, the display is

APPLICATION
NOTES

| sc-aobpressoF piseLay |

| e -ADDREssOF DECoDER |

HL « ASCH
POINT TO ASCIi CHARACTER
|

Y
LOC_ __ OBJECT CODE SOURCE STATEMENTS [poY I
BF0O DSPLY EQU OBFOOH READ ASCII CHARACTER
ORG OEOOOH
E000 02 EO0 ASCH DW DATA | HL < HL +1 |
E002 00 DATA DS 32
ORG OE400H o 2xA
E400 01 O00BF LOAD LXI B,DSPLY CALCULATE ADDRESS OF
E403 11 OOES LXI DDECDR ASCII CHARACTER
E406 2A O00EQ LHLD ASCII
E409 7E LOOPI MOV AM 13
E40A 23 INX H
E408 07 RLC (BC) < (DE)
E40C SF MOV EA STORE FIRST WORD INTO DISPLAY
E40D 1A LDAX D
EmE 02 STAX B
40F 13 INX D p NOT DONE
E410 03 INX B L DE-DEV |
E4ll 1A LDAX D
E412 02 STAX B
E413 03 INX B L Cahal k) 1
E414 79 MOV AC 1
E415 FE 40 CPl 64
E417 C2 (09E4 INZ LOOP1 (BC) « (DE)
E41A 22 O00EO SHLD ASCII STORE SECOND WORD INTO DISPLAY
E4ID C9 RET T
1 BC«BC+1 1

C = ADDRESS OF
DISPLAY + 64?

YES

I ASCII « HL |

Figure 13. 8080A Microprocessor Program and Flowchart that Interfaces to the DECODED DATA CONTROLLER Shown in Figure 9

(LOOP1)

ASCII._SYMBOL WORD 0 WORD | ASCIlI_SYMBOL WORD 0 WORD 1
20 (SPACE) FF FF 40 @ 44 FD
21 ! FF BD 41 A 08 FF
22 " DF FD 42 B 70 ED
23 # 36 ED 43 C Cc6 FF
24 $ 12 ED 44 D FO ED
25 % 1B D2 45 E 86 FF
26 & F2 CA 46 F 8E FF
27 ’ FF FD 47 G 42 FF
28 (FF F3 48 H 09 FF
29) FF DE 49 1 F6 ED
2A * 3F co 4A J El FF
2B + 3F ED 4B K 8F F3
2C B FF DF 4C L c7 FF
2D - 3F FF 4D M Cc9 FA
2E . FF BF 4E N Cc9 F6
2F / FF DB 4F o] Cco FF
30 0 Co DB 50 P oC FF
31 1 FF ED 51 Q Co F7
32 2 24 FF 52 R oC F7
33 3 30 FF 53 S 12 FF
34 4 19 FF 54 T FE ED
35 S 96 F7 55 u C1 FF
36 6 02 FF 56 v CF DB
37 7 F8 FF 57 w C9 D7
38 8 00 FF 58 X FF D2
39 9 18 FF 59 Y FF EA
3A : FF 3F SA Z F6 DB
3B B FF SF 5B [7F F3
3C < 7F FB SC \ FF F6
3D = 37 FF 5D 1 BF DE
3E > BF FE SE ~ FF D7
3F ? e EF SF F7 FF

Figure 14. 64 Character ASCII Decoder Table for the Microprocessor Programs Shown in Figures 12 and 13. 18 Segment
Display Font is Shown in Figure 10.

440

GENERAL INTERFACE 280 INTERFACE:

, 74Ls02 74Ls14
WA 1 2 4 10
. [>o
‘ s 5 1
T e SR B
1 13 >
o = 21, 12 8
[— « X a4
7415368 74L5113
M 1 -
Dg a evpl F(NOTE 1)
| Dy 21ca syl
DATA | Dy Wia avbl TS (NOTE 2) O
| BUS DZ 6 3 3y 7
i D. 2A 2y 5 NOTES: l,gSMICRDPROCESSDR cLock
| n'| 3 2.CS 1S TORQ ANDED WITH THE 1/0 ADDRESS
o 1A Y v, OF THE DISPLAY
G1 G2 ch 100
v,
1 15 7 cc 1 Typ.
| 2 — 19 CAAA 23 g
_ ‘I—— A1 9 A'A"‘f ™M
) i FYR LU =3 I 74L504 dm A 2] %2
10d.a v 9 224 oo |2 1 2 i1 Y 8 \AAZ 2 8
ADDRESS | ! s b K2 2 3 Ds: 4 12] 0 c - NAAS c
Ay 3 3V A2] A, o "
BUS N 1 o AAA o.
A3 3 PYSP 2] a3 oz |4 5 1334, " AL 1
Ay 21 a2 L} W o3} S>of 1, K AN -1 °2
- G1 G2 LN I pa & n 10 LCH Y 20 26 E
1015 7 7 1312 7], F AAA~ F
51 ¢ 05 Dott— I E3 i A HDSP.6508 HDSP-6508 HDSP-6508 HDSP-6508
iy VVy 1
7415367 o] css G, |5 AAA~ 181, .
2 Csa P k2 AAA i3 LEFT RIGHT
cs2
LN Y L1l] '
[EH POy [J]
= [w — K K
cso =
: O il : :
e 18 '] M
- v, OE
MCM6810 I 1 e orp oP
= Co 1 2 345678
15 3 [21]6 [10o[is]1z[1a]13
2 nesean _LJI Il
781812 BOEEE = teprpepefapsfizly
M 5
...._.h.___bo_ 1 Javsaer
° ° ULN 2815 ULN 2815 ULN 2815 ULN 2815
: SAJA3A2A 1A r
— 8 M |2]3ja]s5(6|7]8 |1 |2|3ja]5]6]|7 |8 |1|2|3]a|5]|6]7 |8
2 |4 |5 16 {7 |9 o|n1|12 |4 {5 |6 |7 |9 |roji1]12 [4 IS |6 |7 |9 Jro]11]12
Q102 Q304 5 Q6Q7) Q102 Q304 050607 §a0Q102 Q3 Q4 Q506Q7] §Q0 Q1 Q2 Q304050607
7418259 7415259 7415259 7418259
A B CDG&CL A BCDGCL A B CDGCL A B CDGBCL
1]2|3/3 ul'S 1123 I‘.\’H 15 1123 |3}|4l 123 1:\?|4 15
1 10, 741502 = = = =
A
L 1a 10548 .
2 e [r_s] Do
6 1cL d
3%00 741514
2 10
2 741514
B/
HF T 741502 INGE
— Vo
= Jatste | 11 70502 741514 1
22 13 1p 10

Figure 15. General Interfaces to the HDSP-6508 CODED DATA CONTROLLER

GENERAL INTERFACE

tow twp —=

—
ADDRESS ,

fe—— taw —» — tcH o
empsecEer F B
tow tDH —»
DATA & x-
twe
T\ —

Z-80 INTERFACE

Y Y

®

PARAMETER SYMBOL

WRITE CYCLE

WRITE DELAY

CHIP ENABLE TO WRITE
DATA SETUP

DATA HOLD

WRITE PULSE

WRITE RECOVERY
CHIP ENABLE HOLD

twe

taw

tew

tow

Figure 16. Data Entry Timing for the CODED DATA
CONTROLLER Shown in Figure 15

blanked momentarily after each new character is read
from the RAM. This is accomplished by breaking the total
time allotted for each digit into four segments. During the
first segment, the display is turned off to allow data to
ripple through the AC5947 and during the next three
segments, the display is turned on. The resulting display
duty factor is (1/32) (3/4) or 1/42.6. The display is strobed
at a 130 Hz refresh rate.

Data is entered into the RAM from the address and data
bus of the microprocessor via two control lines Chip
Select and Write. When Chip Select goes low, the address
from the counter is tristated and the microprocessor
address bus and data bus is gated to the RAM. Then after
sufficient delay, the Write input is pulsed, which stores the
data within the RAM. Data entry timing for the 18 segment
CODED DATA CONTROLLER is shown in Figure 16.
Since this timing is very similar to the DECODED DATA
CONTROLLER shown in Figure 9, interface to the various
microprocessor families is the same as described in the
section on DECODED DATA CONTROLLERS.

DISPLAY PROCESSOR CONTROLLERS

The DISPLAY PROCESSOR CONTROLLER provides a
powerful, smart interface which performs many of the
functions normally found in a small terminal. The
DISPLAY PROCESSOR CONTROLLER is designed
around a slave microprocessor or custom LSl integrated
circuit that provides display storage and multiplexing with
a very minimum of circuit complexity. The simplest
DISPLAY PROCESSOR CONTROLLER designed fora 16
digit 18 segment alphanumeric display is shown in Figure

442

17. This circuit is designed around the Intel 8279
Programmable Keyboard/Display Interface. This LS| chip
contains the circuitry necessary to interface directly to a
microprocessor bus and provides a 16 x 8 RAM, pro-
grammable scan counter, and keyboard debounce and
control logic. While the 8279 is specifically designed for 7
segment displays, inclusion of the Texas Instruments
AC5947 ASCII to 18 segment decoder/driver allows the
use of an 18 segment alphanumeric display. The 8279 °
Keyboard/Display Controller interfaces to a micropro-
cessor via an eight line bidirectional Data Bus, control
lines RD (Read), WR (Write), CS (Chip Select), Ao
(Command/Data), RESET, IRQ (Interrupt Request),and a
clock input, CLK. The display is scanned by outputs Ao-3
and Bo-3 which are connected to the inputs of the AC5947,
and outputs SLo-3 which are connected to the digit
scanning circuitry. The 74LS122 is used to provide
interdigit blanking to prevent display ghosting. In addition
to display scanning, the 8279 also has the ability to scan
many different types of encoded or decoded keyboards,
X-Y matrix keyboards, or provide a strobed data input to
the microprocessor. The 8279 provides for either block
data entry, where data enters from left to right across the
display overflowing to the leftmost display location; right
data entry, where data enters at the righthand side of the
display and previous data shifts toward the left; and RAM
data entry, where a four bit field in the control word
specifies the address at which the next data word will be
written. The 8279 allows data written into the display to be
read by the microprocessor, and provides commands to
either blank or clear the display.

The HDSP-8716/-8724/-8732/-8740 DISPLAY PROCES—
SOR CONTROLLER shown in Figure 18 is designed to
provide aflexible 18 segment display interface for displays
up to 40 characters in length. This circuit utilizes a
dedicated Intel 8048 single chip microprocessor to
provide features such as a blinking cursor, display editing
routines, multiple data entry modes, variable display
string length, and data out. This controlleris availableas a
series of printed circuit board subsystems of 16, 24, 32,
and 40 characters in length. The user interfaces to the
8048 microprocessor through eight Data In inputs, six
Address inputs, a Chip Select input, Reset input, Blank
input, six Data Out outputs, Data Valid output, Refresh
output, and Clock output. The software within the 8048
microprocessor provides four data entry modes — Left
Entry with a blinking cursor, Right Entry, Block Entry, and
RAM Entry. The Data Out port allows the user to read the
ASCII data stored within the display, determine the
configured data entry mode and display length, and locate
the position of the cursor within the display. Since the
Data Out port is separate from the Data In port, the 18
segment DISPLAY PROCESSOR CONTROLLER can be
used for text editing independent of the main micro-
processor system. In Left Entry mode, the controller
provides the Clear, Carriage Return, Backspace, Forward-
space, Insert, and Delete editing functions; while in Right
Entry mode, the controller provides Clear and Backspace
editing functions. The controller can also be expanded
into multiple line panels.

The 8048 microprocessor interfaces to the display via the
Port 2 output. The output is configured to enable the
microprocessor to send a six bit word to one of three
destinations as selected by P2g and P27. The PROG output

472 (TYP)

1 2 23
A DAAS Ay A
v, S AAA 19 LET N
ce Ay VWV~ Ay 2
8 AAA 22 2]
Joo > > > i WA 2] ® 24
V. 3K S S $33$3S c AAA c ¢
e wnSe Y :, :, b3 i. AC5947 o, 6 A 1" o, 1 0,
27 4)
ouT A, 25 hij o, b MWA———0; D,
) MmN ' LSV VE— 71e
A
] 2 N E WA =] ; i
hied P], = —AMV s, e,
OUT B. A. 5 18 HDSP-6508 18 HDSP-6508
250 2] 2 G2 VW G Gy
il ET 2 - AAA- Bl 21w
ouTg, Ag N I AAA 20}, 204,
28 A 16 16
J AAAS 4 ° J
18 « 2 AAA- = K
INTEL 3 |) AAA st S
VWA~
e w S M- Em Sim
n
oK op L___W—z oP 210
19 co 1B AAA- 17]co A 17 fco 7
18 DB7 = 15 3(21{6 [10[15]12]14|13 3 [21]6 [10[15[12]14[13
DBg BE
17 =
DATA 18 3:5 516 7 |8 [11)12[13|14 516 {7 |8 [11]12]13]14
BUs 15] g, 0, 010,050405 05 G Oy O 0 0, 05 05,
"l; Daz NE 590 NE 590
12 ::;' Ag A1Az D CECIR Ag Ay A, p CE CTR
° T2 [pelss]2 |3 pra]is
ALY . - =
sty ;Z
1 SL.
WR 1
34
:L‘ 35
2| Ly -
e
21
%0 ls 15
R;
L reser o P2 316y Rimt 8
Vo 2
A =] 82
el |RQ Al L6
Pl Pe
3 cLR Coxt] 7415122
L L 13 |1
4700pF
s —— A e
el et |
AL |
RL, |
s
w |
RL. |
oy K KEYBOARD |
th 39 | |
1
AL, L| :
36 I I
SHIFT _| |
37 | |
CNTL/STB e e e e -
20 V“

Figure 17. HDSP-6508 DISPLAY PROCESSOR CONTROLLER Utilizing the Intel 8279 Programmable Keyboard Display Interface

is then used to store this word at the specified destination.
Destinationg is the 74LS174 hex register. The outputs of
this register are decoded by the 74L.S259 addressable
latches and Sprague ULN 2815 digit drivers. Output 3F 16 is
decoded to turn on the rightmost‘ display digit while the
address of the leftmost display digit varies from 181 for a
40 character display to 3016 for a 16 character display.
Destinationt is the AC5947 18 segment decoder/driver.
The positive edge of PROG stores a six bit ASCII code
within the AC5947. Because destination1 is pulsed once
every time a digit is refreshed, this output is also used as
the Refresh output. Destinationz is the Data Valid output
of the Data Out port. Thus, Data Out actually consists of a
series of six bit words that are sent to Destinationz. Display
refresh is accomplished by first turning off the digit drivers
by outputting a 016 to the 74LS174. Then a new ASCII
character is stored within the AC5947. Finally, a new digit

443

word is stored within the 74LS174. The actual time that
each digit is on varies according to the configured display
length so as to provide a fixed 100 Hz refresh rate.

Interfacing the DISPLAY PROCESSOR CONTROLLER
shown in Figure 18 to microprocessor systems depends
on the needs of the particular application. Since the
information on the Data In and Address inputs is loaded
into the controller through a program within the 8048
microprocessor, the time required to read these inputs
varies from about 100 to 700 microseconds. A latch as
shown in the HDSP-8716/-8724/-8732/-8740 Data Sheet
can be used as a buffer between these inputs and the data
bus and address bus of the main microprocessor system.
The latch provides temporary storage to avoid making the
main microprocessor wait for the DISPLAY PROCESSOR
CONTROLLER to accept data.

1444

Vee 1252 (TYP) HDSP-8732/-8740

\—— DISPLAY BOARD FOR HDSP-8716 ——/

|1 220.(7vP) HoSPaTI6 8728 s
[} 16
TEE—wWA—>>— H H H
” N WA EIEI b 1 1 1
25 WA >]] H H H
27) 17 A —— WA D>— M2 - - L]]
D05 < o) 0 :5 V |4 A —Lyy 20,]] H]
3244‘(—25, vy A; D, __G_QVW__&) 111D, HDsP6508 HDSP-6508 | HDSP-6508 | HDSP-6508 | | HDSP-6508
- 3 7102
DATAOUT no: (24) B4, X K—NW———:S—:>>—: X] 1] [
(23) 2] 5 m P AM—— ™ 1 H 1]
00, <2 1) 7
00y < 22) 0] 4 £ A>T € H i 1 1
LAy sty H 1 1 1
(29) B S AAA—s S 2], (LEFT) 1 1 1 i (RIGHT)
DATA VALID Al AAA 2 o, 2 a, a | L} |
7 13) 2
777777 L a— Dy 2 1 1 H 1
REFRESH <1l ek : 2 a) £ M
A H H 1 :
i E 5) =),
— 2 AAA— L H H H H
BLANK 18 27 (16} 4
OE P2 AN >—— 02 H H H H
v op 2l AAA—1DS: 24 op] 1 H H
A AC5947N 23 (18) 1}6.
G‘ _—M-—é>_ﬁ |‘ 2 3 8 1 3 4 8 q M
33K]|s 3 [21]6 [10[1s[121a]13 |3 [21]6 [10][15]12]1a]13 |3 |21]6 frofrs]r2]1a]13 |3 [21]6 o]1s) 1413
RESET -
S +] 1s[1617]18]11)12[131e 12|13)1a_[15[16f17]18]11}12)13)1a |1s|rer7|18]11]12}r3]ra f15]16|17]18]11]12]13]1a
aTuF 10])
"ea \ 1 1
To0F o ULNZ8IS ULNZ8IS uLNzBIS ULN28Is ULNZ8I5
| 2
3 t XTAL,
20pF %'Wl afafzfr|s]7]e]s
)\
ol XTAL,
= 8048 4 |5 16 |7 |9 J10f11]12
Q702 03 04 05 Q607
r ag 1) (LEFT) s2p. a0
Ay (ERD EX D 7415250
am Ay 1) (ELI) 30]p,y A D G ci
(s)] I i
ADDRESS | Ay —& I H | 312 |1 [ahales
A [
A 2], ! ! =
L 0 H =
— 20 1] s, l‘ sle 7 : :
DI
7 Q
oi,__18) 18] usg 0 3 7418174 : !
5 74
D1y __018) 17} sus, } 745139] ! :
DATA IN Dl 14) 164 sus, B A iG 6 3 1 H
o1, 112 Blsus; eyl JGIZ 1 4o 2 T I
o1 10) 14] aus, N E 3 ! |
2 2 26 P——’T 10 10 + T
oy _® 13 sus, 7415367 s LI } |
©) 12 1 13 4
) L1 BUSy Py : ‘; T3 =|® ! ! |
@ [i e N I D el ! | 1
CAIPSELECT wa P, M ay oL !
L) 7 1 ! |
2 P, 3y |
3 22 |
READY 22 =1 [P2 *% ; 2v : Vee ! |
13) TS0 5 f20 DR el 1 I
ACTIVE Pis =96 | t
&2 T Vee
@ 1 1
EXPAND T | pa
() L o= 0= | o0 == ! 0= 3
["‘VV"—Ve« = >—1 uF uF | uF uF uF
(30) 10K 1n !
cLock out ALE = i T
Vee Ty PROG = | : -
|
|
|

=
<

; ec \———————— DISPLAY BOARD FOR HDSP.8724 et
m pa o0t oL oL
e S A S e 3
@ “ - N DISPLAY BOARD FORHDSPET2 —————————— /.
\ CONTROLLER BOARD FOR — N\ DISPLAY BOARD FOR /

Figure 18. HDSP-8716/-8724/-8732/-8740 DISPLAY PROCESSOR CONTROLLER

The 18 segment DISPLAY PROCESSOR CONTROLLER
shown in Figure 18 can also be interfaced to the main
microprocessor system through a Peripheral Interface
Adapter (PIA). The Data In inputs of the controller would
be connected to an output port of the PIA. In RAM Entry
mode, the Address inputs of the controller would be con-
nected to another output port of the PIA. The PIA provides
a handshake back to the main microprocessor system that
tells when the DISPLAY PROCESSOR CONTROLLER is
ready to accept another data input word from the main
microprocessor. This allows the microprocessor to load
data into the controller at the highest possible rate. A PIA
can also be used to allow the 18 segment DISPLAY
PROCESSOR CONTROLLER to act as a buffer between a
keyboard and the main microprocessor. In this configur-

ation, the main processor could output a prompting
message to the user via the DISPLAY PROCESSOR
CONTROLLER. The user could then enter data from the
keyboard into the display utilizing the controller’s editing
capability. After the message has been entered and edited,
the user would instruct the main microprocessor to read
the final edited message from the Data Out port. One port
from the PIA can be used to control the Data In inputs of
the DISPLAY PROCESSOR CONTROLLER and another
port of the PIA can be used to read the Data Out port.
Figure 19 shows a 6800 microprocessor system using a
Motorola 6821 PIA to control the DISPLAY PROCESSOR
CONTROLLER shown in Figure 18. The PB7 output of the
PIA determines whether data is entered into the controller

15
JRESET
b, 12
16
Pl
Py :i = 27_lbos
26 e 13 2o
T 1> e 2 oo,
28 |°° il £T :; Do,
2 | gl T 2 |0
DATA | — 7 Dq PBo e % DOg
8US | —1+—D3 8, Jo— TSI —==—{DATA VALID
3 19 Vec 20uF
D, 8 T
2 |, 8, j0-a R
K=
EXH iy PAy : 10 L3 P
1
7418157
VMA A5 —+-22Jcs, ::: 7 s :;/Ax
24 6
A3z S1 PA, 123 1A ay 1; f: DI
23 | 8 3y Dig
Az —T—qCs; 10 | i 16 {0
5
ag —+rs, Gl P wh 2 o,
3
B
Ay —2gs, e
aw —-2rmw $5 st HDSP-
2 L 8716/8724/
P - P = 8732/8740
34 5 14 DISPLAY
RESET——QJRESET PA3 an PROCESSOR
. 27 A, 2 1 {5 74LS157 CONTROLLER
IRQ ———TRaB N) 3
1
Pa 2 2 1ia avf2 12 1o,
13 lus 3y 19 doi,
MOTOROLA 10 435 avf-L & doi,
68 6 {2 w2 S 1piy
318
1dseL
15 |
40 s 8
ca; jo— 2 lreapy
22K 1000pF
39 4
CA,; fo—
13] 1] = 3
3
8
|4 PB' 7405122 7418132
2
1o n,
: A, =
cL

.
ER Dg D5 Dg D3 D D;Dp ST

MICROSWITCH 61SW12-1 KEYBOARD

Figure 19. 6800 Microprocessor Interface to the DISPLAY PROCESSOR CONTROLLER Shown in Figure 18 Utilizing a Motorola 6821 PIA

445

=
=
=2
<

[X
:c
o=
o
<T

X «- ADDRESS OF STATUS
POINT TO ADDRESS OF
DATA DESTINATION
[]
[PRB; « 0]
. "°‘p‘§, CONFIGURATION: ENABLE PRA FROM MUX TO DISPLAY
»
* PAO—PA7 OUTPUTS TO DATA IN OF HDSP-87XX !
* CAl (INPUT) MODE 00 SETS FLAG NEG EDGE OF READY PRA « FFy
* CA2 (OUTPUT) MODE 100 CLEARED MPU READ PRA, SET OUTPUT DATA OUT
* NEGATIVE EDGE OF READY CONTROL WORD TO DISPLAY
*2. PORT B: 1
* PBO-PBS5 INPUTS DATA TO 6800 FROM DATA OUT OF HDSP
* CB1 (INPUT) MODE 10 SETS FLAG POS EDGE OF DATA VA FORCE CA2 LOW; CLEAR CB1 FLAG
* CB2 (INPUT) MODE 000 SETS FLAG NEG EDGE OF ER KEY CLEAR INTERRUPT REQUEST
* CB2 (INPUT) MODE 001 SETS FLAG NEG EDGE OF ER KEY FROMIRQB
* CAUSING IRQ [
* PB7 (OUTPUT) LOW ENABLES PAO-PA7 TO MUX
* HIGH ENABLES KEYBOARD TO MUX AND KEY L B < DISPLAY LENGTH + 2 j
T<
A4
8008 PRA EQU $8008 A7 < CB1FLAG
8008 DRA EQU $8008 SET ON POSITIVE EDGE
8009 CRA EQU $8009 OF DATA VALID
800A PRB EQU $800A 7 WAIT FOR DATA VALID
800A DRB EQU $800A
800B CRB EQU $800B
0028 LENGTH EQU 40 MUST BE SAME AS LENGTH
0000 ORG $0000
0000 0002 MESSGE FDB TEXT l A < PRB - 3Fy]
READ DATA OUT WORD
0100 ORG $0100 T NOT DONE
0100 STATUS RMB
0101 CURSOR RMB | (X) <A
0102 DATA RMB 40 STORE DATA OUT WORD
1
0400 ORG $0400 l X< X+1 l
0400 CE 0100 READ LDX LLSTATUS
0403 7F 800A CLR EPRB ENABLE PORT A TO MUX ‘
0406 86 FF LDAA ISFF I
0408 B7 8008 STAA EPRA BEGIN DATA OUT SEQUENCE BcB-1 —I
040B 7D 8008 TST EPRA CLEAR CA1 AND CA2
040E 7D 800A TST EPRB CLEAR CB1 AND CB2
0411 C6 24 LDAB ILENGTH+2 B=0? NO
0413 B6 800B LOOPI LDAA ECRB (LOOP1)
0416 2A FB BPL LOOP!1 WAIT FOR DATA VALID VES
0418 B6 800A LDAA EPRB
041B 84 3F ANDA L$3F [CLEAR CA1 FLAG |
041D A7 00 STAA X0 STORE IN RAM T
041F 08 INX Y
0420 SA DECB 7 < CA1FLAG
0421 26 FO BNE LOOP1 NEXT DATA OUT WORD SET ON NEGATIVE EDGE OF READY
0423 7D 8008 TST EPRA CLEAR CAl AND CA2
0426 B6 8009 LOOP2 LDAA ECRA
8:%‘; g:gﬂ FB gl;lg LOOP2 WAIT UNTIL READY WAIT FOR READY

042C DE 00 LOAD LDX D,MESSGE
042E A6 00 LOOPI0 LDAA X0

0430 08 INX
0431 81 FF CMPA ISFF
0433 27 0D BEQ ENDL JUMP WHEN DONE
0435 B7 8008 STAA EPRA
0438 7D 8008 TST EPRA CLEAR CA1 AND CA2
043B B6 8009 LOOPIl LDAA E
043E 2A FB BPL LOOP1I WAIT
0440 20 EC BRA LOOPIO X < MESSGE
0442 DF 00 ENDL STX DMESSGE POINT TO FIRST ASCII CHARACTER
0444 39 RTS . NOT DONE
Y

0500 ORG $0500 o0
D0 7E s START CLR ECRA | ceondidhomeres |
0506 86 FF LDAA L$FF T
0508 B7 8008 STAA EDRA
050B 86 24 LDAA 1524 l XX +1]
050D B7 8009 STAA ECRA
0510 86 80 LDAA 1,80 MESSGE « X
0512 B7 800A STAA EDRB LAST CHARACTER? STORE ADDRESS
0515 86 06 LDAA 1,$06 DENOTED BY FFy OF NEXT
0517 B7 800B STAA ECRB CHARACTER STRING
051A OE MAIN CLI NO
Oglg 1731[:> 3008 ?5L|$ E{%BAD DISABLE KEYBOARD FROM MUX I oRA
051 42 § I
0521 7D 800A TST EPRB CLEAR CB1, CB2 OUTPUT DATAYORD T0 DIsPLAY @
0524 86 80 LDAA 1580]
0526 B7 800A STAA EPRB ENABLE KEYBOARD TO MUX
0529 86 OE LDAA 1$0E FORCE CA2 LOW
052B B7 800B STAA ECRB ENABLE IRG CLEAR CA1FLAG
052E OF SEI IRQ CAUSES JSR TO READ T

A; <CA1FLAG

SET ON NEGATIVE EDGE OF READY WAIT FOR READY
(LOOP11)
NO

(LoOP10)

Figure 20. 6800 Microprocessor Program and Flowchart that interfaces to the Circuit Shown in Figure 19
446

Ay

from the microprocessor system or from the keyboard.
Control lines CA1 and CAz are used to provide a data entry
handshake to allow data to be loaded into the controller at
the highest possibie rate. Data is read into the main
microprocessor system through Port B of the PIA using
the CB1 input as a data strobe.

The 6800 microprocessor program shown in Figure 20 is
used to operate the PIA interface described in Figure 19.
The microprocessor program following “START" is used
to initialize the 6821 PIA. Once initialized, the PIA can be
used either to load data into the controller via the main
microprocessor, allow data to be loaded into the
controller via the keyboard, or to read data from the Data
Out port into the main microprocessor. The instruction
CLR E, PRB at location 051B1¢ forces PB7 low to connect
the outputs of Port Ato the Data In inputs of the controller.

Subroutine “LOAD” then loads a series of eight bit words
into the controller. “LOAD” continues to output words
until it reads an FF16 to denote the end of the prompting
message. The instruction sequence LDA A |, $80 and STA
A E, PRB at location 052616 forces PB7 high to connect the
output of the keyboard to the Data In inputs of the
controller. In this mode, the user can enter or edit datainto
the DISPLAY PROCESSOR CONTROLLER. The 4B input
of the 74LS157 has been grounded to prevent the
keyboard from loading a control word into the DISPLAY
PROCESSOR CONTROLLER. The instructions LDA A I,
$0E and STA A E, CRB at location 052B16 enables the
“ER” key on the keyboard to interrupt the microprocessor
when the edited message is complete. Subroutine “READ”
would then be used to read data into the 6800 system.
First, subroutine “READ"” outputs a special control word,

4
6 15
5 RESET
25
os, 7405132
24
PBs
£
23 = 2
PBs 7_{pos
22 26 bo,
PB, 3
21 % oo
PBaf—o 24 3
Do,
PBa [23 2
B, DO,
2 pBo 12 2 _1bo,
=1 Pcu 16 2 paTA VALID
De 2|isTe)
29
===l D,
30 D5 PA7 ;‘; 144 4a
DATA = 1> PAG 113 748157
BUS D3 39 5
w2 | P = 22 12 »
33 |, PAg 1A N [T
! 1344 avi— e R
0 | NTEL 10438 L ‘i Dig
6 8255A S12 1% Dlg
As—1—qS 3.
At s e HDSP.
15 -
Ao —{#o sT 8716/8724/
176 Rb ——RD -4 8732/8740
L 36 Jow = DISPLAY
VO WR e i , 12 PROCESSOR
SYSTEM RESET PA3 an CONTROLLER
RESET [143n 74LS157
[y 24on 12
[211 av— 12 1o,
13148 3y 19 o,
10} 25 P 8 1o,
L] PP w2l 8 11,
? 8
peaf—2 -
ﬁs ST
PCg - = 28_1ReaDY
(ACK) 22K 1000pF
Vcc—-—W\—-——T—-i(—r——l
10 1 4
P 4
| (o8F) 13((K] 1) 3 s =
~Vee 3 -
D> B4
[7418132 74500
204F_I* —p8, 745122
INTERRUPT —op A1
REQUEST
e ® Y _ 6
% ajo——
> = 8
741500 745132
i7
1000pF L
ER DgDsDgD3Dy DyDg ST
MICROSWITCH 61SW12-1 KEYBOARD

Figure 21. 8080A Microprocessor Interface to the DISPLAY PROCESSOR CONTROLLER Shown in Figure 18 Utilizing an Intel 8255 PIA

441

NOTES

x
=
-
<<
=
-
a.
a.
<<

; THIS PROGRAM IS WRITTEN IN 8080 ASSEMBLY LANGUAGE.
; THIS PROGRAM USES AN 8255 PIA TO ACCESS THE HDSP-87XX
; ALPHANUMERIC DISPLAY SYSTEM.

3 PORT CONFIGURATION:
l PORT A (MODE 1 OUTPUT):
PAO-PA7 OUTPUTS TO DATA IN OF HDSP-87XX
PC7 (OBF) OUTPUT; TO CHIP SELECT
PC6 (ACK) INPUT; TO READY
FLAG PC7 (OBF) CLEARED BY OUTPUT; SET BY READY

;2. PORT B (MODE 1 INPUT):

H PB0-PB6 INPUTS DATA FROM DATA OUT OF HDSP-87XX

H PC2 (STB) INPUT; LOADS DATA ON POS EDGE OF DATA VALID
H FLAG PCO (INTR) CLEARED BY INPUT; SET BY DATA VALID

3 PORT C:
PC4 OUTPUT; LOW ENABLES PAO-PA7 TO HDSP-87XX
5 HIGH ENABLES KEYBOARD TO HDSP-87XX

000C PA EQU OCH
000D PB EQU ODH
000E PC EQU OEH
000F CNTRL EQU OFH
0028 LENTH EQU 40 MUST BE DISPLAY LENGTH
ORG O0E00OH
E000 02 EO ASCIL DW TEXT
E002 00 TEXT N 40
ORG OE100H
E100 00 STAT DB 0
E101 00 ADDR DB 0
E102 00 DATA DB 0
ORG 0E400H
E400 F3 READ DI
E401 Fs5 PUSH PSW
E402 ES PUSH H
E403 Cs PUSH B
E404 3E 08 MVI A, 08H
E406 D3 OF ouT CNTRL ENABLE A SIDE OF MUX
E408 3E FF MVI A,OFFH
E40A D3 0C ouT PA BEGIN DATA OUT SEQUENCE
E40C O0E 2A MVI C,LENTH+2
E40E 21 O0E1 LXI HSTAT FIRST WORD
E411 DB OD IN PB CLEAR INTR
E413 DB OE LOOPI IN PC
E415 IF RAR
E416 D2 13E4 JNC LOOP1 WAIT UNTIL INTR IS SET
E419 DB 0D IN PB
E41B 77 MOV MA STORE IN RAM
E41C 23 INX H
E41D 0D DCR C
E41E C2 13E4 INZ LOOPI READ LENGTH+2 WORDS
E421 DB OE LoOP2 IN PC
E423 17 RAL
E424 D2 21E4 INC LOOP2 WAIT UNTIL READY
E427 CI POP B
E428 El POP H
E429 Fl1 POP PsW
E42A FB EI
E42B C9 RET
E42C 2A O00EO LOAD LHLD ASCII FIRST WORD OF MESSAGE
E42F 7E LOOPS MOV AM
E430 FE FF CPL OFFH CHECK TO SEE IF DONE
E432 CA 44E4 JZ ENDL
E435 D3 0OC our PA OUTPUT TO DISPLAY
E437 23 INX H
E438 DB OE LOOP6 IN PC
E43A 17 RAL
E43B D2 38E4 INC LOOP6 WAIT
E43E 00 NOP
E43F 00 NOP
E440 00 NOP
E441 C3 2FE4 JMP LOOPS NEXT WORD
E444 23 ENDL INX H
E445 22 00EO SHLD ASCII
E448 C9 RET
E449 3E A7 START MVI A0ATH
E44B D3 OF ouT CNTRL
E44D 3E 0OC MVI A,0CH CLEARINTE A
E44F D3 OF ouT CNTRL
E451 3E 05 MVI A 05H
E453 D3 OF out CNTRL SET INTE B
; PROCEDURE TO LOAD HDSP-87XX SYSTEM
E455 3E 08 MVI A,08H
E457 D3 OF ouT CNTRL ENABLE A SIDE OF MUX
E459 CD 2CE4 CALL LOAD
; PROCEDURE TO READ DATA OUT OF HDSP-87XX SYSTEM
E45C 3E 09 MVI A,09H
E4SE D3 OF our CNTRL ENABLE B SIDE OF MUX
E460 FB El
H INTERRUPT MUST CALL READ

STORE MACHINE STATUS ON STACK |

CNTRL « 08y
ENABLE PA FROM MUX TO DISPLAY

!

PA «— FFy
OUTPUT DATA OUT
CONTROL WORD TO DISPLAY

L C < DISPLAY LENGTH +2]

HL <~ ADDRESS OF STAT
POINT TO ADDRESS OF
DATA DESTINATION

1

READ PB
CLEAR INTR FLAG (PCq)
1

]
Ag < INTR FLAG
SET ON POSITIVE EDGE
OF DATA VALID

i

WAIT FOR
DATA VALID

A< PB
CLEAR INTR FLAG (PCol
(HL) < A
STORE DATA OUT WORD
[HL < HL +1]
[CeC-1 |
NO
(LOOP1)
YES
A7 « OBF FLAG (PC;)
SET ON NEGATIVE EDGE OF READY WAIT FOR READY

(LOOP2)

OBF FLAG CLEARED?
NO

RESTORE MACHINE STATUS
FROM STACK

HL «< ASCII
POINT TO FIRST ASCII CHARACTER

o

=
|~

>

NOT DONE

i
A< (HL l

PA AS M1 OUTPUT, PB AS M1 INPUT I READ ASCH CHARACTER

LAST CHARACTER?
DENOTED BY FFy
NO

(ENDL)

PA <A
RUTPUT DATA WORD TO DISPLAY I

!

HL < HL +1

ASCIl « HL

[HL < HL +1]

‘.—.

A, « OBF FLAG (PC;)
SET ON NEGATIVE EDGE OF READY

WAIT FOR READY

(LOOPS)

OBF FLAG CLEARED?

NO

(LOOPS)

NOT DONE

Figure 22. 8080A Microprocessor Program and Flowchart that Interfaces to the Circuit Shown in Figure 21

448

FF1s, to the Data In inputs of the DISPLAY PROCESSOR
CONTROLLER. This control word causes the controller to
begin its data output sequence. The controller outputs a
series of data output words that define the configured
entry mode and display length, location of the cursor, and
the ASCII text stored within the DISPLAY PROCESSOR
CONTROLLER. “LOOP 1" within the program continu-
~ ously reads the Data Valid output and waits until the
controller outputs the STATUS word. This STATUS word,
the subsequent CURSOR ADDRESS word, and the string
of ASCII characters are then stored in consecutive words
of scratch pad memory starting at address “STATUS.”

A similar PIA interface designed for an 8080A micro-
processor system that uses an Intel 8255A PIA isshownin
Figure 21. This interface operates in much the same way
as the 6821 PIA interface that was previously described.
The PCa output of the PIA determines whether the Data In
inputs of the 18 segment DISPLAY PROCESSOR
CONTROLLER shown in Figure 18 are connected to the
PIA or to the keyboard. Control lines PCs and PC7 are
used to provide a data entry handshake between the
8080A microprocessor and the DISPLAY PROCESSOR
CONTROLLER. Data is read into the 8080A micro-
processor system through Port B of the PIA using PC2 as
the data strobe.

449

The 8080A microprocessor program shown in Figure 22 is
used to operate the PIA interface described in Figure 21.
The microprocessor program following “START” is used
to initialize the 8255A PIA. The instructions MVI A, 08H
and OUT CNTRL at location E4571¢ force PC4 low to
connect Port A of the PIA to the Data In inputs of the
DISPLAY PROCESSOR CONTROLLER. Subroutine
“LOAD” would then be used to load a prompting message
into the controller. The instructions MVI A, 09H and OUT
CNTRL at location E45E16 connect the keyboard to the
Data In inputs of the controller. In this mode, the user can
enter data into the DISPLAY PROCESSOR CON-
TROLLER, or to edit an existing line. Subroutine “READ”
would then be used to read the data from the Data Out port
into the 8080A microprocessor system.

Subroutine “READ” begins the data output sequence by
outputting the special control word FFH to the Data In '

inputs of the DISPLAY PROCESSOR CONTROLLER.
Then, the subroutine reads the series of data output words
that are outputted by the controller and stores them in
consecutive words of scratch pad memory starting at
address STAT.

OTES

=
=
=
=T
=
-
a.
<T

