[6/’ HEWLETT

PACKARD

Cache Hit or Miss
Analysis with the
HP 16542A

Application Note 1225-2

Advantages of Increasing
Cache-Hit Efficiency

Cache Hit or Miss
Analysis with the
HP 16542A

A cache can speed up memory-intensive systems significantly, however,
an efficient cache that enhances system performance is an outcome of a
good design model. This application note discusses some of the
problems encountered when capturing system data needed to determine
the size and makeup of the cache appropriate to your system. 1t also
explores how to capture contigucus 1 Meg blocks of data using two

HP 16542A data acquisition cards and one HP 165204 pattern
generator card.

The pattern generator is used to count 1 Meg samples captured by the
acquisition system. Once 1 Meg of address references have been
sampled, the pattern generator immediately sends out a halt vector to
the Motorola 68020 HALT line, which puts the processor in a halt state.
The first 1 Meg block is then uploaded to a computer. Capturing an
unlimited number of 1 Meg address references is accomplished by
repeating the process until enough data is available for adequate analysis
by a cache simulation program.

While it may seem obvious that a properly designed cache can
significantly increase system performance, it's helpful to see some
indications of how significant these effects are. The following simple
formula of an average READ-cycle time gives an objective idea.

t.=t.+ (1-h)t,

where: t_=read cycle time!
t, = cache cycle time
1, = main memory cycle time
h = probability of address reference being in cache (cache
hit)
{1-h} = probability of address reference not in cache
(cache miss)

If the average main memory cycle time is 3 times the cache cycle time, a
decrease of 2% in the cache miss probability (1-h) will result in a 6%
decrease in system cycle time (t.,,,.). When evaluating a cache design,
the rewards of increasing cache efficiency can be great.

I'This formula assumes an external cache, and that the cache controller only initiates an
external {main memory) cycle when a cache miss occurs.

Cache Performance:
Size vs. Misses

Capturing Data for a Cache
Simulation Program

In general, the performance of a cache follows the exponential curve
shown in figure 1. However, due to the system's workload and the
architecture of the cache, the knee of the curve can vary along the cache
stze axis making it difficult to put quantities on either axis. Part of a
cache designer's task is to add quantities to the axes relating to their
particular system.

of

misses
A

cache
size

Figure 1. Number of Misses Relative to Cache Size
A cache's efficiency in any system relies on the following factors:

¢ Absclute size

¢ Set associativity

¢ Number of lines/set
¢ Number of bytes/line

A cache simulation program can analyze system data (that is, address
and type of microprocessor cycle) and help to determine the best cache
architecture for any system. The results of the cache simulation are
closely tied to the ability to operate on data that accurately represents
actual system workloads.

Two methods for generating data for a cache simulation program are:

» Artificially-generated data from a statistical model
s Data captured from an actual system

Artificially-generated data may help to model some simple systems, but
these data are only approximations of actual operations. While
considerable research has been done on modeling a cache, factors such
as workload are difficult to quantify and cannot be approximated with
any accuracy. Artificially-generated data is used when actual data from
the system is not available.

If the actual system (that is, one to which vou can make physical
connections) data is available, the next problem is the measurement
systemn. Twao major constraints of a measurement system are:

13 Capture speed
2} Capture depth (how much data can the measurement system
store?)

It's fairly easy to determine necessary capture speed by using the bus-
cycle speed of the target system. But the amount of data needed is more
difficult to determine. The following equations, courtesy of Dr. Harold S.
Stone?, give a starting point. For example, a 32 Kbyte cache has the
following parameters:

cache size = 32 Kbytes
set associativity = 4 way
line width = 16 bytes
number of sets = 512
miss ratic = 3 %

If you assume you must capture enough address references to get
100 misses per set, the minimurm number of address references is:

100 misses/ set

190 misses/set | 3393 nits/ set
0,03 miss ratio fsrse

3333 hits/set x 512 sets = 1.7M address references?
If you increase the cache size to 128 Kbytes, increase the number of sets

to 2048, and assume that your miss ratio will drop by a factor of 2 for the
larger cache, your estimate becomes:

100 misses/ set

——— = 6667 hits/set
0.015 miss ratio

G666 hits/set x 2048 sets = 13.7 M address references®

2DI‘. Harold 8. Stone, High-Performance Compniter Architecture, Addison Wesley, copyright,
1990, pages 47 - 48,

IEach address relerence contains multiple bytes dependent on the number of bits of address
and Tunction code captured. Il each address reference consists of 4 bytes of address and 2
bytes of status information, each address reference in this equation should he multiplied by
G to get the total amount of storage space needed by the host computer.

Methods of Capturing Data

Measurement Description

The problem of caplure depth may be larther compounded by the need

tey capuare 32 or tore channels of address references, depending on the
requiretnents of the cache simulation program. For each of the address

references, address and Tunction eode information needs to be captured.
This clearly requires a measurement system with deep metmory.

When capturing address references, there are two possible approaches.
The first, ilustrated in figure 2, is a saanpling method, The data
acquisition system takes some number of samples and uploads the data
Lo o host computer. When the upload eperation is complete, the next
data acquisition takes place. With this sampling method vou must take
enantgh samples to be statistically valid. Because states executed during
the upload operation are never capiured, the statistical sampling method
runs the risk of missing infrequent events and may give a less-than-ideal
representation of actual system operations.

upload data
capture to host capture
data computer data

I {lost data) I

Figure 2. Sampling Method of Capturing System Data

The siecond alternative, illustrated in ligure 3 and used in this application
note, involves HALTing or holding off operation of the microprocessor
while the measurement. system transfers the captured data to the host
computer. When the upload is complete, the microprocessor is released
and resumes operation from the last executed cyele. The advantage of
this method is that data is captured in a contiguous fashion, not in a
satpled mannet. This means you can capture as much data as
necessary, limited only by the amount of storage space available to the
host computer. This method also ensures the capture of

infrequent events.

Microprocessor HALTed

AN

capture capture capture
data data data

Figure 3. Contiguous Method of Capturing System Data

For the measurements made in this application note the Motorola 68020
microprocessor was used because it is HALTable. Most Intel
microprocessors canmot be operated in a halt mode in spite of the fact
that they have a HOLD line. When the HOLD line on an Intel
microprocessor is asserted, another device must take over as bus master

within one clock cycle. If a master dees not take control of the address
bus within this clock cycle, the address bus is tri-stated and any device
on the bus (including the microprocessor) is placed in an indeterminate
state. Once the HOLD line is deasserted, the startup vector may be lost,
resulting in lost information.?

The process described in the remainder of this application note is based
on capturing contiguous 1 Meg x 32 {channel) blocks, using two

HP 165424, 2-Mbyte data acquisition cards. An HP 16520A pattern
generator card is used to assert the HALT line on the 68020 and to count
states for the acquisition cards, as shown in figure 4,

User presses

GROUP RUN

pattern generator
loads vectors

l

HALT line on 68020
released - 68020
starts running

AS clocks pattern
generator and data €
into acquisition cards

o

count=1M?

yes

pattern generator
HALTS 68020

|

acquisition cards
dump data to host
]

Figure 4. Measurement Overview

4an alternative for Intel processors is to use a non-maskable interrupt. that forces a jump to a
routine of NOPs.

For each 1 Meg of address references, you need only press the GROUP
RUN field on the HP 16500A. Note that cach 1 Meg trace from the
acquisition cards sent to the computer is 4 Mbytes long because each
sample is 4 bytes wide,

Equipment Used Figure 5 is a diagram of the measurement equipment used for this

measurement.

HP1E520A Pattern Generator
card {1 each}

U

HP6542A 2 Meg Acquisition
cards {2 each

I

COMPUTER
[eee— | —= | ; .
LOGIC = —
ANALYZER O I; i

iz A WS N

Figure 5. Necessary Measwrement Equipment

Connection and Figure 6 shows the necessary connections from the measurement

Set Up Specifics equipment to the target system. The pattern generator is used to
control whether the target system is running or HALTed. The pattern
generator also counts the number of output states because the
acquisition cards can't count the states captured.

Notice that the single line from the pattern generator to the 63020
HALT line has a delay circuit. This is necessary because of the way the
pattern generator loads and then outputs its vectors. The pattern
generator loads its first vector and outputs this vector while it is loading
the rest of its memory. It takes the pattern generator about 800 ms to
load the 4k vectors necessary for this measurement. The delay circuit
gives the pattern generator time to load its vectors before releasing the
68020 HALT line.®

B1f the neasurement were made withoul the delay circuit the pattern generator wonld

output its first vector (HALT deasserted), which would immediately put the 83020 in a
RUN state. This, in turr, would result in data being acqmired by the HP 16542A before the
pattern generator is ready te begin counting slates for the HP 16542A. The end result
would be noncontiguous blocks of data acquired by the HP 165642A.

HP16542A 2 Meg
Acquisition
Cards

HP18520A Pattern
Fenerator
Card

delay circuit

{described below)
AS
JFETCH
HALT R/W
68020 Target System | FC2-FCO
ADDR

Figure 6. Connections to Target System

A schematic of the delay circuit is shown in figure 7. The circuit delays
the RUN (HALT deasserted) signal from the pattern generator by more
than 1 second to allow the pattern generator to load all of its vectors
before it runs. The inverters are used to 'square up' the signal after each
RC integrator and to prevent glitches from being propagated through
the circuit.®

GAny circuit with a delay of 1 second or more will work as long as it does not
produce glitches.

RUN/HALT {from
FPattern Generator}
p

A
TdF 4 Tafn 7AF 13

/
¥ b L] 00 _
__’.__,\ MT")—I:b W\T— I
2HWF T ZHWF T

_f:: . @C ;T: : 7481500 .

220)3 {}’0 v

— /
HALT tto 63020)

delay > 1 second
Figure 7. Delay Circuit for HP 16520A RUN/HALT Vector

Figure 8 is a timing diagram showing the RUN line from the pattern
generator and the affects on the HALT line to the 68020 and the AS line.
The AS line is used to clock the pattern generator and the

acquisition cards.

delay to show
patiern gencrater
to Inad vectors

1M sample
complete

- Y
{from

Pattern G enerator)

RAT L
e AT T

Figure 8. Timing Diagram of Input and Qutput of Delay Circuit

The physical connections to the HP 16500A analyzer cards are
as follows:

HP 16520A Pattern Generator Card

input of delay circuit = Pod 3 channel 0
AS from 68020 = EXT CLK of input pod

HP 16542A Data Acquisition Card

68020 address lines = Pod D channels) - 15 and
FPod C channels -7

FC2 - FCO = Pod C channels § - 10

R/W = Pod C channel 11

The menu setups for the data acquisition and pattern generator cards are
shown in figure 9 through figure 11:

(2NME Data Acqg D) (Funfiguratinﬁ] (Prinl] (Froup Run]

Define Analyzer Avallable Pods
Mame : MACHIMNE 1 (': ________ t--:‘:‘:l
(D: stsrstesrsasssssl)
Compars remory:

|pnalyzer configuration is 32 Channels ¥ 1n]

——— Analyzer ———y — Pod width — Multiprobing
Hidth Depth required
32 [h All 16 Channels Na
16 ey | Lower 8§ Channels Ng
] an Lower 8 Channelsg ves

Modify Width and depth:

Figure 9. Acquisition Card Configuration Menu Set Up

10

(Pattern Gen D) [Farmat] (Print] Graup Pun)
Input Clock | Divide | T
l TTL szternalJl by 1 ‘ l ngbols]
Fod 02 Fod 02
'l Pl g05 0 7.
[hoLT_] [[]
B
C
D
E
F
G
H
I
J
Figure 10. Pattern Generator Format Menn
(2NB Date Acq D) (Format J (Printj (Group Pun)
Selup/Hotd ' master Clock (TTL)
Mot Cal’d [Jt }
Fod C Poa D
(TIL)(TIL)
(Master)(flaster)
TS T e I S s
ADDR orrrrraar || wneekernnnihvres
FC P 1 .
R/_M s
Lab4
Lab5
Labb
Lab?
Labf

Figure 11. Acquisition Card Format Menu

Once the physical connections are made and the channels assigned for
the acquisition and pattern generator cards, the pattern generator must
be programmed to output the vectors to control the HALT line of the
68020). The measurement requires 1 M vectors for each run. The start
of program and end of program listing for the pattern generator is shown
in figure 12 and figure 13.

11

p—

Pattern Gen D) (Listing) ' Step (fiint) (Froup Run]

Lovels>| [Instr) wa)

«ww START OF PROGRAN ##%
WAIT IMB RUN
Delete || REPEAT 256 RUN
REPEAT 256 RUN
REPEAT 256 RUN
REPEAT 256 RUN
Merge REFEAT 256 ERUN
REPEAT 256 RUN
REPEAT 256 RUN
REPEAT 256 RUN
REPEAT 256 Q§ﬂ}——————J
REPEAT 2
REPEAT 256 RUN
FEPEAT 256 FRUN
REPEAT 256 RUN
REPEAT 256 RUN
REPEAT 256 RUN
REPEAT 256 FRUN
Insert || REPEAT 256 RUN
REPEAT 256 RUN

BIAINEIB|E

2
g
s
"
-
W

. Start of Pattern Generator Listing

The first line in the pattern generator listing is WAIT IMB (Wait.
Intermoduie Bus). For this measurement, the WAIT IMR line tells the
pattern generator to wait for the arm from the acquisition card before
stepping through the remainder of the vector listing. This arm will occur
when the trigger condition is satisfied in the HP 16542A data acquisition
card. In this example, the trigger condition is the first state seen by the
data acquisition card.

Note that each step in the pattern generator listing, except for the first
and last steps, is a REPEAT statement. Each REPEAT 256 tells the
pattern generator card to keep the microprocessor in the RUN state for
the durafion of 256 AS External Clock cycles. The end result of these
REPEAT statements is that the microprocessor is allowed to RUN for
1047546 Read/Write cycles (REPEAT 256 * 4091 + REPEAT 250}, The
number of cycles counted by the pattern generator REPEAT statements
is approximately equal to the number of states acquired in the data
acquisition card.

12

LPattern Gen D] (Listing) l Step |'Print | 'Grnup Pun]
Lapers} (Instr)(HeLT.)

Saze: l Symbal

REPEAT 236 RUN

REPERT 256 RUN
REFPERT 256 EUN
REPEAT 256 RUN

REPEAT 256 RUN
REPEAT 256 RUN
Herge REPEAT 236 RUN
REPEAT 256 RUN
REPEAT 256 RUN

REPEAT 256 RUN
(4085) |[REPEAT 256 [RUN |
REFEART 256 RUN
REPEAT 256 RUN
REPEAT 256 PRUN
Copy || REPEAT 256 RUN
REPEAT 256 RUN

. REPEAT 256 RUN
REPEAT 250 RUN
HALT

#%w% END OF PROGRAM +3a

Figure 13. End of Pattern Generator Program Listing

The last line of the pattern generator listing, as seen in figure 13, is
HALT. When this vector is sent out, the 63020 HALT line is asserted
and all microprocessor activity is halted. This in turn halts all bus
activity between main memory and the microprocessor, When the
HALT occurs, the HP 16642A will have completed an acquisition cycle.

Once the paitern generator listing is entered, the next step is to set up
the trigger conditions for the data acquisitior cards. Because you are
interested in all states generated by the 68020, the trigger condition will
be DON'T CARESs, and the data captured will be any state as shown

in figure 14.

13

(2ME Dala Achg H] (Trigger] (Prinl] (Group Run]

Trigger Specification “Records

l orf I

; o Mem Lenglh
Trigger on 047522

Then slare all qualified slales,

Gualified states are ["anystele” |

Poststore
100 %

lLaneh (TapDR) (Ri=A) (FE)
Base> (Hex)[: Hex J(Hex |}

a (oomssoa)(DI EERD)

b [xxxxxxxx] [P] (¥)
d [xxxxxxxx] C x)«

Figure 14. Acquisition Card Trigger Menu

The final step is to set up an intermodule sequence that allows the
pattern generator and acquisition cards to work together in a single
acquisition run. Figure 15 shows the Intermodule menu which is set up
to have the HP 165424 2-Mbyte data acquisition card arm the

HP 16520A pattern generator card when the trigger condition is found.

' Intermodule | (Skew] (Prlnt] [Group Run)

[Group Run] [PORT OUT]
z 2MB Data Acq D
Stopped
Slopped

[Tlme Correiation Bars]

23 Data Acg D] Not Correlated

Figure 15. Intermodule Bus Menu Set Up

At this point all of the setups and configurations are complete and the
measurement is ready to run. Pressing the Group Run will cause the
following sequence to occur. First, the pattern generator will hold the
microprocessor in the RUN state. This will result in AS becoming active,
When AS asserts for the first time, the first valid address is sampled by
the data acquisition card. Because the trigger condition on the

HP 165424 is a DON'T CARE, this first sample is also recognized as the

14

trigger condition and immediately sends out an arm signal to the pattern
generator. The first line of the pattern generator listing, WAIT IMB,
detects the arm which, in turn, allows the remainder of the vectors to he
sent out on each external clock cycle (rising edge of AS). The pattern
generator finally sends out the last vector which asserts the HALT. This
results in the assertion of the 68020 HALT line. At this time
approximately 1M of valid addresses have been captured by the

HP 16542A data acquisition card. A typical data capture is shown

in figure 16.

Note that the total number of clocked pattern generator vectors is equal
to 1047548 (REPEAT count plus two for the first and last vector), This
is slightly less than the Mem Length, 1047552, specified in the 2 MB Data
Acq Trigger menu. The reason for this difference is because there is
some uncertainty as to the exact time that the microprocessor will assert.
HALT once the pattern generator sends out the HALT vector. This
uncertainty can result in an indeterminate number of states being stored
between acquisitions.

In this measurement, when running multiple acquisitions, the total
number of states acquired between runs only varied by one state. To
avoid the possibility of missing any clocked states, the measurement
should be set up so that the microprocessor always halts before the
HP 16542A acquisition is allowed to complete. This will ensure that
contiguous 1M state blocks are acquired. Because the acquisition is
never allowed to complete, it is necessary to Stop the acquisition run
before you upload the data to a computer.

As an example, from our setups, the total number of states captured by
the HP 165424 acquisition card is 1047551 (states 0-1047550). Refer to
figure 16. This state count is one state less than specified in the Mem
Length field, figure 14. Basically, the HALT line from the pattern
generator is programmed to send out the HALT vector before the

HP 16542A card has completed its acquisition. Again, this is done to
prevent missed states.

If you were to increase the total number of pattern generator vector
counts so that Mem Length states are acquired, that is, set the last
REPEAT count to greater than or equal to 251, you would capture the
specified Mem Length states. But, you would risk missing a few states
after the HP 16542 A has filled its memory. If a few lost states are not a
concern, set the REPEAT count so that the acquisition

always completes.

15

Conclusion

Example Programs

(2M6 Data Acg H J (Listing) (Print] (Broup Run]

off
]
Base>] | Hex |

1047536 00193D18
1047537 00193CAB
1047538 00193CAC
1047539 00 193CE0
1047540 00400041
1047341 0QC193CE4
1047542 00400621
[1047543] 00193CES
1047544 QOSFADOL
1047545 00193CBC
1047546 00193CCO
1047547 00193CC4
1047548 00 193C00
1047549 00193CD4
1047550 00SFRDOC

Bl

x
=B R R R B e b B = R b R) R EH

— ot bt (Tt k= n

R;—N|
Hex |

Figure 16. Example Data Capture From 68020 Target System

The 1 Mbyte trace can then be uploaded to a computer, via HP-IB, using
the program at the end of this application note. To capture subsequent
1 Mbyte blocks, you need to repeat the process of pressing Group Run
and uploading data, until the desired number of contiguous 1 Mbyte
blocks is acquired. The data that has been uploaded to the computer
can then be used as input to the cache simulation program.

Capturing actual system data for cache analysis has been difficult, if not,
impossible, in the past. However, using statistically-generated data is
often less desirable due to the number of system characteristics that
cannot be quantified statistically.

The HP 16542A deep memory data acquisition card has the capture
speed necessary 1o get systerm data, and it has the deep memory needed
to capture large blocks of data. This is particularly important given the
amount of data it takes to adequately quantify a system cache. After
capturing the data, it is easily transferred to a host computer for analysis
by a cache simulation program.

Not shown in these programs are the HP-IB communication procedures:

Init_I0, Read_lO, Write_lO, and Close_l0O. See the Examples Chapter of
the HP 16542A Programmer's Guide for details of these procedures.

16

/* Upload Programming Example */
#include <stdioc.h>
#include <stdlib.h>
$#include <string.h>
#define MAX_SIZE 16000 /* Maximum buffer size for
Read IQO and Write IO */
#define TRUE 1
#define FALSE 0O
/* 10 prototypes */
int Init_IO(void):
int Read IO(int, char *, size t }:
int Write_TIO{ int, char *, size t);
int Close IO(int });
fdefine CARDC 3 /* HP 165422 occupies card slot € */
void Initialize_16500(void)
int Select(int });
int Read_data(const char * };
void
main{ wvoid)
{
/* Initialize IO port */
hpib id = Init_I0(};
/* Initialize the 16500 loglc analyzer */
Initialize 16500();
/* Select the HP16542A card */
Select { CARDC });
/* Upload the captured Cache data from the analyzer
* and store it in a file named "cache.dat"
*/
Read data{ "cache.dat™ };

/* Close the IO port */

Close_IOQ(hpib id),

17

/**k'kk'kk'k*'kk‘kk‘kk********’kk************t***t******t***

* Function Name: Initialize 16300 *
* Passed Parameters: MNone *
* Return Value: None *
* Description: *
* The function initializes the HP16500 logic *
* analyzer by clearing all status registers and *
* enabling all 3ervice Reguest Status and Standard *
* Event Status register bits. *

t*t*k***k*k*k*k**********************k******k***/
void
Initialize 16500(void)}
{
char 1d[801;
int term;
/* Clear the 16500 */
Write_I0{ hpib_id, "*CLS", 4);
/* Enable all Service Request Status Register bits */
Write IC(hpib id, "*3RE 255", &);

/* Enable all Standard Event 3tatus Register birts */

Wwrite TO(hpib_id, “*ESE 255", 8):

/***********k****t******************ttt****tk***********

* Functicon MName: 3Select *
* Passed Parameters: card_pumber - integer *
* Return Value: TRUE - successful completion *
* FALSE - unsuccessful completion *
* Description: *
* The functien selects which module in the *

* HP16500 card cage receives commands. This function *
* must be invoked bkefore sending any commands to the *
* HP16542A 100MHz State Analyzer Card. *

***********k*k*k*k*k***********‘k*‘kk********k**********k/
int
Select(int card_number)
{
char command[10];
sprintf(command, *":3ELECT %d", card number };

Write I0{ hpib_id, command, strlen{ command) };

return{ TROUOE };

18

/*'ﬁ*iirii*\k***’**’**’ki(*k***'ﬁ**ir*‘t***’A:**X******i**i**********

int

*

*

*

*

*

Function Mame: Read data *
Passed Parameters: *
data_file name - char pointer to the name of the *
data file to which the binary *

data read from the logic *
analyzer is stored. *
Return Value: TRUE - successful completion.......... *

Description:
Open the file specified by the data file name *

parameter and write the binary data from the logic *
analyzer to this file. Returns TRUE when all *
information has been read, *

i****i"k}l’*’A:**k***i(**k********k****k*k*k**k****i**k******/

Read_data(const char *data_file_name)

{

char command[20];

char buffer[MAX SIZE];
int bytes;

FILE *data file;

data_file = fopen{ data_file name, "wb");

/* Turn coff system header information
* which is not required for binary
* data upload
v/

strepy { command, ":S5YSTEM:HEADER OFF")
Write IG(hpib_id, command, strlen{ command));

strepy(command, ":SYStem:DATA?"™ };
Write I0{ hpib_id, command, strlen{ command } };

bytes = Read IO(hpib_id, buffer, (size t) MAX SIZE };
while(bytes == MAX_SIZE)
{
twrite{ buffer, 1, sizeof(buffer), data_file };
bytes = Read_IO(hpib_id, buffer, (size_t) MAX SIZE

fwrite{ buffer, 1, (size_t) bytes, data file };

fclose(data_file }:
return{ TRUE };

19

[ﬁﬁ HEWLETT

PACKARD

For more information, call your In Europe, Africa and Middle East,
local HP sales office listed in your please call your local HP sales office
telephone directory or an HP regional or representative:

office listed below for the location of

your nearest sales office. Austria/South East Area:
{0222) 2500-0

United States of America:

Rockville, MD Belgium and Luxembourg:

{3011 670-4300 (02)761 31 11

Rolling Meadows, IL Denmark:

{708 255-9800 145199 10 00

Fullerton, CA Finland:

(714) 999-6700 (90188 721

Atlanta, GA 30339 France:

14041 980-7351 11) 69.82.65.00

Canada: Germany:

(4161 678-9430 0619216 0

Japan: Greece:

{8113 3335 8192 {01) 68 28 811

Latin America: Ireland:

Mexico (1) 2844633

(525) 202-0155
Israel:

Brazil {03) 5380 333

(11) 709 1444
Ttaly:

Australia’New Zealand: (02) 95 300 930

(03) 895-2895
Netherlands:

Far East: {020} 547 6669

Hong Kong

(852) 848-7070 Norway:

Korea {02) 87 97 00

(2) 769 0800

Taiwan Portugal:

(23717 9524 (11)301 73 30

Singapore

(65) 201 8554 South Africa:

India (011) 806 1000

{11) 690 3556

PRC Spain:

(1) 505-38638 900 123 123
Sweden:
{08) 750 20 00
Switzerland:
0571312111
Turkey:
{90-114 12583 13
United Kingdom:
{0344) 362 867
For countries not listed, contact
Hewlett-Packard, International

Technical information in this Sales Branch, Geneva, Switzerland

document is subject to change Tel: +41-22-780-7111

without notice Fax: +41.22-780-7535

Printed in U.S.A.

September 1992

5091-5446E

20

