
Data Logging
using Remote Programming
Application Note 1370-1

2

One of the most obvious and useful applications of

remote programming of test instruments is to run

the same test periodically and simultaneously,

saving the data from each measurement to the

computer’s hard drive. This allows an instrument

to continuously monitor a system without user

interaction for hours or even days at a time. For

instance, a test could be set up using an Agilent

86100A Infiniium DCA (digital communications

analyzer) to measure the extinction ratio every

thirty seconds for an hour. Similarly, an Agilent

8614XB optical spectrum analyzer (OSA) could

measure signal-to-noise ratio in a DWDM system

once an hour for two days. Unfortunately, this is

deceivingly complex and requires a surprising

amount of programming overhead. In addition to

the usual programmatic requirements for control-

ling and communicating with the instrument or

instruments, the program must include functions

which incorporate user inputs and controls, file

set-up and I/O, the delays between measurements,

and elementary error handling.

Remote programming is the process of using a PC

to issue commands to an instrument and read

measurement results back to the PC. This is most

commonly done using a General Purpose Interface

Bus (GPIB) in accordance with the IEEE 488.2-

1992 standard. Agilent manufactures GPIB cards

for PC’s as well as UNIX® workstations and also

Ethernet-to-GPIB gateways. Additionally, virtually

all of Agilent’s lightwave instruments are equipped

for remote programming via GPIB and come with

documentation on the commands and functions

available. Almost any command which can be input

through the instruments front panel has a remote

command equivalent.

The simplest format in which to output data is a

delimited ASCII text file. A delimited ASCII text

file is a simple text file where a specific character,

usually a tab or comma, separates each datum.

Additionally, this type of file offers excellent gener-

ality. An ASCII file can easily be transferred to a

number of database (such as Oracle® 8 or

Microsoft® Access) and spreadsheet programs

(such as Microsoft Excel or Lotus® 1-2-3). Most

other file formats require a file header which is

unique to that file format. In addition to limiting

the output file’s compatibility to one program,

writing the header requires additional program

complexity. Many commonly used programming

languages (including Microsoft Visual C++ and

Visual Basic, National Instruments LabView, and

Agilent VEE) include ActiveX controls which allow

direct data transfer into database and spreadsheet

programs but this approach adds complexity and is

again done at the cost of generality. A text file

format offers the maximum of simplicity and

generality and as such is perfect for example

purposes.

Introduction

3

With the added complexity of

elements including user input,

file I/O, and error handling,

program flow becomes an issue

of utmost importance. The first

step is to prompt the user for the

necessary information such as

the delay between measure-

ments, the total test duration,

and the name and location of the

output file. After the necessary

information is received from the

user, the program must set up

the specified output file and

establish communication with

the instrument or instruments.

After this step, the program

enters a loop which is repeated

until the specified time limit is

reached, an error occurs, or the

user aborts the program. With

each iteration of this loop, the

data is acquired from the instru-

ment, any necessary calculations

are performed, the data is

formatted and sent to the output

file, and the program simply

pauses until it is time to repeat

the loop. An outline of the

program can be seen in Figure 1.

The user input is one of the

simpler facets of a data-logging

program. Graphical languages

like LabView and VEE are

designed with user interface as a

top priority. In such languages,

setting up a user input is as

simple as dragging and dropping

a few boxes. Even in C++ or

Visual Basic, getting a simple

input from the user is not diffi-

cult. In C++, the simplest way is

to prompt the user by printing a

text string to the program

window, and then looking at the

user’s response. In Visual C++ or

Visual Basic, one can even use

“forms” which use familiar MS

Windows® controls. One impor-

tant thing not to overlook,

however, is to check for errors in

this process. When using pre-

made input functions like those

in graphical languages, invalid

inputs are usually disallowed, so

these types of errors are less of a

problem. On the other hand, in a

language such as C++ the

program may prompt for a length

of time and there is nothing to

stop the user from typing in his

or her name, if for no other

reason than to see if the

programmer was being careful.

Malicious inputs aside, it is quite

possible for the user to make a

typo or other mistake and the

program must be designed to

deal with input errors.

The next step is to set up the

instrument and the output file.

The language and the operating

system used determine the

complexity of this step. Error

catching is vital in this step as

the user can input file and path

names which may not exist

which can cause errors. In MS

Windows, for example, an error

may be caused if the user speci-

fies a directory that is not

present, a file that already exists,

or both. It is vital that the

program knows what to do in

any case. It is simple enough to

create a new directory or over-

write an old file, but the program

must know how and whether or

not to perform these tasks. An

example of what this may look

like is shown in Figure 2, page 4.

Notice that the program first

assumes that the directory exists

and that the file does not exist. If

there is a problem, it assumes

that the source of error was the

directory needing to be created

or the file needing to be cleared

and then the program performs

the appropriate task. This very

simple error correction will

handle the vast majority of

errors stemming from the file

set-up step. It is also necessary

in most languages to set up an

output stream to the output file.

An output stream is simply

memory buffer that holds the

data while the file is being

written. This usually only

requires a few lines of code, but

error checking is necessary here

as well.

The other part of the set-up step

in the program is to set up the

instrument. This step includes

verifying the communications

link and establishing communi-

cation with the instrument. This

is usually also the appropriate

time to change the instrument or

instruments to the desired

settings. In some cases, it may be

necessary to change the settings

periodically. For instance, one

measurement may be taken in

Programming Specifics

1. Prompt the user for test duration, frequency, output path, etc.

2. Set up the instrument and the output file(s).

3. Perform measurement and gather data from the instrument.

4. Perform running calculations (for example average, minimum,
maximum).

5. Send data to the output file (can be performed after the loop).

6. Wait until it is time for the next measurement.

7. Repeat steps 3–6 until the time limit, an error, or asked to stop.

Figure 1. Program Outline

decibels and another in watts. In

such a case the settings would

have to be changed between

measurements or as part of each

measurement process. However,

one-time settings changes, such

as selecting the output format,

should also be done in this step.

Again, it is important that the

program be equipped to handle

common errors from this process

and provide the user with infor-

mation on any errors. For

instance, if a communications

link cannot be set up, the

program should identify that as

the problem. It is far easier to

find and correct a problem in the

system if the program informs

the user from where the error

originates.

After all of the necessary param-

eters have been gathered and the

set up is complete, the real work

of the program can begin. The

first step of the measurement

loop, of course, is to actually

take the measurements. After the

GPIB link has been set up, it is

usually just a matter of sending

string commands over the link

and then reading the response.

As usual though, error checking

is vital. Any number of problems

can develop while making a

measurement and the program

must be equipped to deal with

them. When an error is

encountered by the instrument,

it stores an error code and

description in a special buffer

which can be retrieved by the

program (usually using the

“:SYST:ERR?” command in SCPI

compliant instruments) which

can in turn be used in the

program’s error handling

routines. SCPI (Standard

Command for Programmable

Instruments) is a series of

industry-wide instrumentation

standards regarding how instru-

ment commands are structured

and contains several common

commands. Another advantage

of this strategy is that the

programmer can define their

own errors even if there are no

real programmatic or link errors.

For example, the programmer

can set limits on the measure-

ments such that if the measure-

ment moves out of a certain

range, for instance the signal-to-

noise ratio gets too low, the

program will stop and an error

message will appear. With well-

designed and implemented error

handling, this is quite easy.

After the measurements have

been made, the program can

make any necessary calculations

such as averaging, minimum and

maximum values, or any number

of other statistical calculations.

Two related reasons exist for

doing these calculations here

rather than after all of the data

has been gathered. First is

4

Figure 2. Psuedocode example of error catching for a new file

//path is the user specified file path
//name is the user specified file name
//error is a error catching variable
......
error = change_directory(path); //try to change the current directory
if (error) { //check for an error

error = create_directory(path); //on error, try to create new directory
if(error) break; //if new directory can’t be created, break

error = change_directory(path); //try to change to the neww directory
if(error) break; //break on error

}
error = create_file(name); //try to create new file
if (error) { //check for an error

error = delete_file(name); //try to delete the existing file
if(error) break; //break on error

error = create_file(name); //try to create the new file
if(error) break; //break on error
}

......

memory management. This is not

really a problem when the data

set is ten points, but if the data

set has ten million points, it can

cause a slowdown in perfor-

mance. Second, it can be difficult

to run calculations on large data

sets. Finding the average of ten

million points, for example,

could take as long as a few

seconds, depending on the

computer, the algorithm, and the

language in which the program is

written. One the other hand, if

the data is calculated as the data

comes in, there is no delay at the

end of the program and far less

memory is required. Less

memory is needed because the

new data can be written over the

old data in memory as it comes

in since the old data has already

been stored in the output file.

Additionally, even if the calcula-

tion is quite complex, the perfor-

mance slowdown can be worked

into the delay function of the

program and, as such, there will

not be any noticeable delay. A

ten-second calculation makes

little difference to the user if it is

completed during a ten minute

delay between measurements.

The next step is to write the data

to the text file. In most cases,

this involves only converting the

data to a string format and then

sending that string to the output

file. Most instruments give the

option of returning the measure-

ment values in an ASCII format

which means the conversion may

be unnecessary, the strings need

only be concatenated.

Additionally, the program must

add some recognizable delimiter

character between the measure-

ments. This is required so that

the database or spreadsheet can

tell when one number ends and

the next begins. As mentioned

earlier, the most commonly used

delimiting characters are tab and

comma. Two complications can

force a change in this step. First,

if for instance, the measure-

ments produce a table of data it

may require that a new text file

is created with each iteration.

An example of such a case is if

the user might want to record

channel number, wavelength,

power, and signal-to-noise ratio

for each channel in a DWDM

system. A new text file would

have to be set up each time this

set of measurements was taken.

The second variation can come if

it is necessary to output all of

the data at one time. An example

may be that some calculation

must be delayed until all of the

data has been gathered, or the

output to the text file is too

complicated or time consuming

so it should be done only once.

In such a case, the data would be

collected from all of the

measurements, whether it is into

an array or a string, and then

written to the output file only

after the program had

completed. As each measure-

ment was taken, each individual

datum would be appended to the

data which had already been

collected. Remember, however,

that this is done at the cost of

memory usage and system

performance.

The final step in the loop is for

the program to wait until it is

time for the next measurement.

This step is really the heart of

the program. On the surface, it

seems very simple, but it is

deceivingly complex. First of all,

the wait function must allow the

user to abort the program. The

reason for this is if there is some

problem and the user needed to

stop the program, it would be

quite frustrating to wait for the

entire test duration to fix a

simple problem. Second, the

program should use a minimum

of system resources during this

step. It makes no sense to tie up

the computer while this program

is simply waiting until the next

measurement. At first look, the

programmer may want to use a

sleep or wait command for the

duration of the measurement

period. This function, in effect,

stalls the program for a certain

duration of time and uses very

little system resources.

Unfortunately, this simple solu-

tion has a couple of problems.

First is that most sleep and wait
functions do not allow the user

to abort the function. That is, if

the user presses the abort button

or key, the program will not even

look at the abort button until the

sleep function is complete. For

example, if the measurements

are being taken once every hour,

the abort command may take an

hour to be read, which makes the

abort button all but useless. It

seems that an easy solution to

this problem would be to remove

the sleep function and start a

sub-loop that repeatedly checked

if the user entered the abort
command until the specified

time limit was reached. The

problem with this approach is

that it uses far too much

processor power as the program

is occupying system resources to

perform these tasks, but is not

doing any useful work. The

optimum solution lies some-

where in the middle between

using a single sleep function for

5

6

the duration of the delay and

using a loop without any sleep
function. That is, for the program

to sleep for a short period of

time, check for the abort
command, and then loop until

the abort command is seen or

the time limit is reached. The

sleep time could be a half-

second, fast enough that the user

may not even notice the delay if

they abort the program, but far

long enough that the processor

can perform many other tasks in

the mean time. The overall wait

function would then look like

something like the code in

Figure 3.

The second complexity is that

the measurements and even

sometime the writing of the file

can take seconds or in some

cases even minutes and may not

require exactly the same amount

of time with each iteration. As

such, it is necessary to subtract

the completion time from the

other steps in the loop from the

overall wait time so that the

entire process takes a consistent

and predictable amount of time.

Measuring this completion time

is usually easy enough to accom-

plish by simply storing the

system time when the measure-

ment and file writing processes

start and end and then finding

the difference of the two. The

required cycle wait time is then

the total wait time minus the

measurement time.

At this point, it is time to repeat

the entire measurement loop.

The loop should be repeated

until an error is encountered, an

abort command is given, or the

time limit is reached. If properly

coded, the abort command can

be treated as an error. By doing

this the loop need only check for

an error or the time limit instead

of checking for an abort

command separately.

The error-handling function

should be performed after the

program exits the loop. All this

function needs to do is output a

description of the error encoun-

tered. The error can simply be

coded as a number; for instance

error number one is a failure to

open the file, error number two

is a GPIB problem, and so on.

The error catching function

would consist basically of a

lookup table that would take the

error code as a number and

output the description.

One can completely automate

the process of both the measure-

ment and data transfer and

storage processes using simple

remote programming. This

means that no operator is

needed to press the buttons on

the instrument nor write down

the results and type them into a

database, it is all done in the

program. The program required

for such a process is not overly

complex nor is it by any means

extremely simple.

//wait time - the amount of time to wait (in milliseconds)
//stop - boolean whether the user has aborted the program

j = 0; //initialize a counter
while (j < wait_time && !stop){ //loop until time limit or
abort

sleep(500); //sleep .5 seconds
stop = user_abort(); //check for user abort
j = j+500; //increment the counter

}

Figure 3. Pseudo code example of wait function

The following is an example of a datalogging program written in Microsoft Visual C++. It is important to

note that no actual measurements are taken in this program in the interests of generality. Instead,

dummy functions which return random numbers are used as place holders.

/*——————————————————————————————————————-
Program: Datalogger v1.0
Start Date: August 25, 2000
Last Modified: September 7,2000
Language: Visual C++, v6.0
Description: Datalogger is an example program which demonstrates how a test can repeated at a
specified interval over a period of time. The data is then logged into a tab delimited stan-
dard ASCII text file which can be imported into a spreadsheet or database program.

To make the program more general, no actual measurements are taken. Instead, dummy
methods are used to return dummy values to illustrate the concepts, rather than actually make
a measurement.

The basic program structure is as follows:
1. Set up the instrument and the output file(s)
2. Perform measurement and gather data from the instrument
3. Send the data to the output file and perform running calculations

(e.g. averaging, min, max)
4. wait specified time (e.g. 1 minute)
5. repeat 2-4 until the time limit or asked to stop

Note: This example is provided as an illustration “as is”, and Agilent Technologies makes no
warranty of any kind with regard to this example.

——————————————————————————————————————-*/
//LIBRARY CALLS
#include <windows.h> //windows functions
#include <stdio.h> //standard i/o library
#include <conio.h> //more i/o functions
#include <time.h> //time functions
#include <direct.h> //directory functions
#include <io.h> //file io functions
#include <sys/stat.h> //constants
#include <stdlib.h> //standard functions
#include <fstream.h> //File i/o library

//PROTOTYPES
int wait(int tme, time_t start);
int creatFile(char path[], char fileName[]);
int Measures(double *ans, time_t *tmStmp);
int Msrmnt1(double *ans);
int Msrmnt2(double *ans);
int Msrmnt3(double *ans);
int DataToString(double data[3], time_t TmStmp, char *dat);
int Get_Time(char name[], long *num);
int Get_String(char name[], char *str);
int Error_Catch(int Error_Code);
int Inst_Setup(int Addr);
int init_stats(double measures[3], double *max, double *min, double *mean);
int stats(double measures[3], double *max, double *min, double *mean, int j);
int print_stats(double max[3], double min[3], double mean[3]);

/*——————————————————————————————————————-

7

Appendix A: Visual C++ Example

Function: Main (INCOMPLETE)
Description: The main function is the backbone of the program. It makes the calls the various
other methods and functions and controls program flow.

Inputs:None
Output:int - represents an error, if any.
——————————————————————————————————————-*/
int main(void){
//Declarations
time_t start, stamp; //the start time of the program and timestamp holder
double meas[3], *mes; //an array for holding measurement data and a pointer
double max[3], min[3], mean[3]; //arrays for holding min/max/mean
double *mx, *mn, *ave; //pointers to those arrays
int i = 0, err=0; //int counter and error code
long duration, period; //long ints for test duraion and period
char data[256], *dat; //a string for the data and a pointer to it
char file[256], *fil; //a string for the file name, and a pointer
char path[256], *pat; //a string for the path, and a pointer

mes = meas; //assign the pointers to the arrays
dat = data;
pat = path;
fil = file;
mx = max;
mn = min;
ave = mean;

err = Get_String(“File Name (e.g. c:\\loggeddata\\)”, pat); //prompt for the path
if(err !=0) return Error_Catch(err); //check for errors

err = Get_String(“Path (remember the file extension ‘.txt’)”, fil); //prompt for the file name
if(err !=0) return Error_Catch(err); //check for errors

printf(“data will be written to %s%s.\n”,path, file);

//print the path and file name

err = creatFile(path, file); //create output file
if(err !=0) return Error_Catch(err); //check for errors

ofstream out(file); //declare output stream “out”
if (!out) return Error_Catch(-1); //exit if an error occurs while opening the file

err = Get_Time(“duration”, &duration); //prompt the user for test time
if(err !=0) return Error_Catch(err); //check for errors

err = Get_Time(“period”, &period); //prompt user for the measurement period
if(err !=0) return Error_Catch(err); //check for errors

printf(“duration:\t%d\tperiod:\t%d (secs)\n”, duration, period);
//print the test duration and period in seconds

err = Inst_Setup(717);
if(err !=0) return Error_Catch(err); //check for errors

time (&start); //find the start time of the program; the current time

err = Measures(mes, &stamp); //take the first Measurements

8

if(err == 0){ //check for errors
DataToString(mes, stamp, dat); //convert the data to a string
printf(“%s”, data); //print the data
out <<data; //write data to the file
init_stats(meas, mx, mn, ave); //initiate the running stats

}//if(err == 0)

while(i*period<duration && (err == 0) && ((err = wait(period, start))==0)){
//loop until the test duration is completed or the program is aborted

err = Measures(mes, &stamp); //take the Measurements
if(err == 0){ //check for errors

DataToString(mes, stamp, dat); //convert the data to a string
printf(“%s”, data); //print the data

out <<data; //write data to the file
time (&start); //update the time
i++; //increment the counter
stats(meas, mx, mn, ave, i); //calculate the running stats

}//if(err == 0)
}//for()

print_stats(max, min, mean);
return Error_Catch(err);

} //main()
/*——————————————————————————————————————-
Function: Wait
Description: The WAIT function simply stalls the computer between measurements. It polls the
keyboard to see if any key was pressed, if so, the program stops and an error message is
displayed. This is to allow the user to abort the program at any point. The method uses the
sleep() method (in windows.h) to save on processor usage during the stalls.

Input: int time - specifies the number of seconds for which the method is to run.
Output:int - represents an error, if any.

0 - no error
1 - program aborted

——————————————————————————————————————-*/
int wait(int tme, time_t start){

//Declarations
int ch1; //ch1 is used to hold keyboard data, i tracks the # of runs
time_t finish; //finish is the finish time of the method
double elapse; //elapse is the run time of the method

do
{
Sleep(500); //wait 500ms (.5 seconds)
ch1 = _kbhit(); //if a key was pressed, ch1 gets a nonzero value

elapse = difftime(time (&finish), start); //calculate the elapsed time
} while((ch1 == 0) && (elapse<tme));

//repeat until time expires or a key press
if (elapse < tme){ //determine if a key was pressed
getch(); //clear the pressed keyfrom the keyboard buffer
return 1; //return error code 1 (program aborted by user)
} //if
else{ //no key was pressed

return 0; //return no error code
} //else

} //wait()
/*————————————————————————————————————

9

10

Function: creatFile()
Description: the function creatFile creates a text file with a given name
in a given directory. If and Error is encountered, an error message
appears on the debug screen

Inputs:
path[] string (char[]) naming the destination directory
filename[] string (char[]) naming the destination file
Outputs:
int -1 error in creating the file or changing directory

0 no error
————————————————————————————————————*/

int creatFile(char path[], char fileName[]){

int dr, dr1, fil; //variable declarations used for error checking
//dr stores the output of chdir()
//dr1 is used to recheck if the first chdir() fails
//fil stores the output of creat()

dr = chdir(path); //change directory to the designated path

if (dr!=0){ //check for errors in changing directory
dr1 = chdir(“c:\\”); //change the directory to ‘c:\’
if (dr1 != 0) return -1; //if that fails, return error
dr1 = mkdir(path); //try to create a new directory
dr1 = dr1 + chdir(path); //try to move to that directory
if(dr1!=0) //recheck for error
return -1; //return error code and quit function

} // if(dr != 0)

fil = _creat(fileName, S_IWRITE); //creates a file named as designated

if (fil == -1) //check for errors in creating the file
return -1; //return error code and quit function

return 0;

} //creatFile

/*——————————————————————————————————————-
Function: Measures()
Description: the Measures function calls the individual measurement functions and adds a time
stamp and then returns the data as a “Data” structure.

inputs: *ans[] - a pointer to the destination of the measurement data
*tmStp - a pointer to the destination of the time stamp

outputs: int - error code
0 - no error
2 - measurement error

——————————————————————————————————————-*/
int Measures(double *ans, time_t *tmStmp){
//Declarations

int err=0; //error code

err = Msrmnt1(ans); //take the first measurement
if (err == 0) //check for error

11

err = Msrmnt2(ans+1); //take the second measurement
if (err == 0) //check for error

err = Msrmnt3(ans+2); //take the third measurement

time(tmStmp); //current time is the timestamp

return err;
}//Measures()
/*——————————————————————————————————————-
Function: Msrmnt1()
Desription: Msrmnt1 simply a dummy function which returns a random double. It should be
replaced by a function which actually takes a measurement.

inputs: double *ans - pointer to the answer destination
output: int - error catcher

0 - no error
2 - measurement error

——————————————————————————————————————-*/
int Msrmnt1(double *ans){
double num = rand(); //create a random number
*ans = num; //place it in the pointed location
return 0; //return “no error”
}
/*——————————————————————————————————————-
Function: Msrmnt2()
Desription: Msrmnt2 simply a dummy function which returns a random double. It should be
replaced by a function which actually takes a measurement.

inputs: double *ans - pointer to the answer destination
output: int - error catcher

0 - no error
2 - measurement error

——————————————————————————————————————-*/
int Msrmnt2(double *ans){
double num = rand(); //create a random number
*ans = num; //place it in the pointed location
return 0; //return “no error”
}
/*——————————————————————————————————————-
Function: Msrmnt3()
Desription: Msrmnt3 simply a dummy function which returns a random double. It should be
replaced by a function which actually takes a measurement.

inputs: double *ans - pointer to the answer destination
output: int - error catcher

0 - no error
2 - measurement error

——————————————————————————————————————-*/
int Msrmnt3(double *ans){
double num = rand(); //create a random number
*ans = num; //place it in the pointed location
return 0; //return “no error”
}
/*——————————————————————————————————————-

12

Function: DataToString
Description: DataToString converts the data (an array of three doubles)
and the time stamp into a string, which can then be exported to the text file.

inputs: double[3] data - the measurement data
time_t TmStmp - the time stamp
char *dat - pointer to the soutput string

Output: int - error code (always 0)
——————————————————————————————————————-*/
int DataToString(double data[3], time_t TmStmp, char *dat){

struct tm *StructTime; // a time structure which will hold the time stamp

StructTime = localtime(&TmStmp); //convert the time_t to a tm structure

sprintf(dat, “%f\t%f\t%f\t%s”,data[0],data[1],data[2], asctime(StructTime));
//build the string and store it in the pointer location

return 0;
}//dataToString()

/*——————————————————————————————————————-
Function: Get_Time()
Description: this function prompts the user for a time value in hh:mm:ss
format and then returns the number of seconds.

inputs: Char[] name - the name of the time to be propted
long *num - a pointer to the total number of seconds

output: int - error code
0 - no error
3 - user input error

——————————————————————————————————————-*/

int Get_Time(char name[], long *num){
int hours, minutes, seconds; //declarations

if(printf(“What is the test %s (hh:mm:ss)?”, name) <0) //prompt the user
return 3; //and check for error

if(scanf(“%d:%d:%d”, &hours, &minutes, &seconds) != 3) //scan the input
return 3; //and check for error

*num = hours*3600 + minutes*60 + seconds;//calculate the total number of secs

return 0;
//return “no error”
}
/*——————————————————————————————————————-
Function: Get_String()
Description: this function prompts the user for a string value.

inputs: Char[] name - the name of the string to be propted
long *str - a pointer to the total number of seconds

output: int - error code
0 - no error
3 - input error

——————————————————————————————————————-*/

13

int Get_String(char name[], char *str){

if(printf(“What is the %s?”, name) <0) //prompt and check for error
return 3;

if(scanf(“%s”, str) != 1) //scan the user input and check for error
return 3;

return 0; //return “no error”
}
/*——————————————————————————————————————-
Function: Error_Catch()
Description: Error catch is a very simple error handling function which prints the error to
the output screen then echos the input

Possible Error Codes:
0 - no Error
-1 - Error in opening or creating the output file
1 - Program Aborted by the User
2 - Error in Measurement
3 - Error in User input
4 - Instrument setup error

input: int errorCode - the code of the error present
Output: int - error code (identical to the input)
——————————————————————————————————————-*/

int Error_Catch(int Error_Code){
switch(Error_Code){

case 0: //no error case
printf(“Program Completed Sucessfuly!\n”);
break;

case -1: //file error case
printf(“ERROR: Cannot create/open output file\n”);
break;

case 1: //program aborted
printf(“ERROR: Program aborted by the User\n”);
break;

case 2: //measurement error
printf(“ERROR: Error in taking measurement\n”);
break;

case 3: //User input error
printf(“ERROR: User input Error\n”);
break;

case 4: //instrument setup error
printf(“ERROR: Cannnot setup instrument interface\n”);

}//switch(Error_Code)
return Error_Code;
}//Error_Catch()
/*——————————————————————————————————————-

14

Function: Inst_Setup()
Description: this is a very simple dummy program which simply returns 0. In an actual test
system, this would be replaced by code to set up the instrument, now it is simply a place
holder.

inputs: int Addr - address of the instument
output: error code 0 - no error

4 - instrument set-up error
——————————————————————————————————————-*/
int Inst_Setup(int Addr){
//insert instrument setup code here
return 0;
}//Inst_Setup()
/*——————————————————————————————————————-
Function: init_stats()
Description: intit stats simply copies the first measurement’s data into the
min, max and mean arrays.

inputs: double[3] measures - the meausrement data
double *max - pointer to the maximum arrays
double *min - pointer to the minimum array
double *mean - pointer to average array

output:int - error code (always 0)
——————————————————————————————————————-*/
int init_stats(double measures[3], double *max, double *min, double *mean){
for(int i=0; i<3; i++){ //cycle through measurements

*max = measures[i]; //place the data in the max....
*min = measures[i]; //min.....
*mean = measures[i]; //and mean arrays.

max++; //increment the pointers before moving to the
min++; //next measurement
mean++;

}//for
return 0;

}//init_sata()
/*——————————————————————————————————————-
Function: stats()
Description: stats updates the running stats (min, max, and mean). It is very similar to
init_stats.

inputs: double[3] measures - the meausrement data
double *max - pointer to the maximum arrays
double *min - pointer to the minimum array
double *mean - pointer to average array
int j - the number of measurements, which have bee taken

output:int - error code (always 0)
——————————————————————————————————————-*/

15

int stats(double measures[3], double *max, double *min, double *mean, int j){
for(int i=0; i<3; i++){ //cycle through measurements

if (measures[i] > *max)
*max = measures[i]; //place the data in the max....

if (measures[i] < *min) //min.....
*min = measures[i];

*mean = (measures[i] + (*mean) * j)/(j+1); //and mean arrays.

max++; //increment the pointers before moving to the
min++; //next measurement
mean++;

}//for
return 0;

}//init_sata()
/*——————————————————————————————————————-
Function: print_stats()
Description: print_stats simply prints the running stats at the end of the
program.

inputs:
double[3] max - the maximums of the measurements
double[3] min - the minimums of the measurements
double[3] mean - the arithmetic means of the measurements
outputs:
int - error code (always 0)
—————————————————————————————————————-*/
int print_stats(double max[3], double min[3], double mean[3]){
printf(“max value:\n%f\t%f\t%f\n”, max[0], max[1], max[2]);
printf(“min value:\n%f\t%f\t%f\n”, min[0], min[1], min[2]);
printf(“ave value:\n%f\t%f\t%f\n”, mean[0], mean[1], mean[2]);
return 0;
}//print_stats()

16

The following figures show a National Instruments LabView version 5.1 example of a datalogging

program. The first figure is a program hierarchy illustration followed by pictures of each individual

program function.

Figure B-1. Hierarchy of the LabView datalogging example.

Appendix B: LabView Example

1
7

Figure B-2. The main program module of the LabView datalogging program.

18

Figure B-4. The inst_setup function is a dummy function. It’s only functionality is to pass on any
errors passed to it. This is where the instrument setup functionality should be inserted.

Figure B-3. The array_to_string function converts the raw data into a string with a time stamp which can then be written to the output file.

19

All of the other functions are standard LabView v5.1 modules. See the LabView help files for

documentation on these modules.

Figure B-5. The measurement functions are also dummy functions. They simply return a random number. Shown is
the first of three identical functions. These functions would be replaced with actual measurement functions.

Figure B-6. The running_average and time_to_seconds functions are simple mathematical
functions. They are put in separate files in order to save space in the main funciton.

Agilent Technologies’
Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and

problems. We strive to ensure that you get the test and measurement capabilities you paid for and

obtain the support you need. Our extensive support resources and services can help you choose

the right Agilent products for your applications and apply them successfully. Every instrument

and system we sell has a global warranty. Support is available for at least five years beyond the

production life of the product. Two concepts underlie Agilent’s overall support policy: “Our

Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised

performance and functionality. When you are choosing new equipment, we will help you with

product information, including realistic performance specifications and practical recommend-

ations from experienced test engineers. When you use Agilent equipment, we can verify that it

works properly, help with product operation, and provide basic measurement assistance for the

use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement

services, which you can purchase according to your unique technical and business needs. Solve

problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost

upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system

integration, project management, and other professional engineering services. Experienced Agilent

engineers and technicians worldwide can help you maximize your productivity, optimize the

return on investment of your Agilent instruments and systems, and obtain dependable

measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test & measurement needs.

Online assistance:
www.agilent.com/comms/lightwave

Phone or Fax
United States:
(tel) 1 800 452 4844

Canada:
(tel) 1 877 894 4414
(fax) (905) 282 6495

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599

Australia:
(tel) 1 800 629 485
(fax) (61 3) 9210 5947

New Zealand:
(tel) 0 800 738 378
(fax) 64 4 495 8950

Asia Pacific:
(tel) (852) 3197 7777
(fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 2000 Agilent Technologies

Printed in USA December 15, 2000

5988-1329EN

UNIX is a registered trademark of The Open Group.

Oracle is a registered US of Oracle Corporation, Redwood City, California.

Microsoft and MS Windows are trademarks of Microsoft Corporation.

Lotus and 1-2-3 are US registered trademarks of Lotus Development Corporation.

