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Digital Auto-Power Spectrum Measurements
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This application note is concerned with a single channel measurement of power using the HP Fourier
Analyzer. The measurement is distributed in the frequency domain and is thus a power spectrum or
(in some cases) a power spectral density. Several considerations in applying the Fourier Analyzer to
the measurement must be exercised and are each discussed. These include classifying-the type of
data to be analyzed, choosing the proper window, calibrating the displayed spectra, normalizing
broadband spectra to density measurements, and others. Statistical ensemble averaging and the

energy measurement of transients are also treated.
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. INTRODUCTION

Spectral analysis of data has for a long time been popular in characterizing the
operation of mechanical or electrical systems, etc. A type of spectral analysis,
the power spectrum (and power spectral density), is especially popular because
a “power” measurement in the frequency domain is one that engineers readily
accept and apply in their solutions to problems. Single channel measurements
(auto-power spectra) and two channel measurements (cross-power spectra) have
both played important roles; however, the auto-power spectrum is perhaps the
more popular. One reason is because it has been much easier to implement with

analog techniques.

The measurement of the auto-power spectrum is but one of many measurements
that may be performed on the HP Fourier Analyzer (e.g., cross-power spectrum,
transfer function, coherence, auto- and cross-correlation, probability distri-
bution function, etc.), but because the power spectrum enjoys considerable
popularity, this note is devoted entirely to it. Consideration is given to periodic,
random, and transient data; absolute signal calibration and accuracy; the
analysis windows employed; signal averaging for statistical definition of signals
and to recover signals in noise, and application-oriented examples to allow
immediate use on practical problems.

Table 1 is a condensation of methods described in this note and should prove
useful in making power measurements with the HP Fourier Analyzer.
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Table I. Measurement Method
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Il. CLASSIFY THE DATA

A measurement of the acceleration of the case of a “noisy” rotating machine
might produce data suspected of being random; but for the most part, it will be
coherent, owing to the periodic qualities of the machine’s operation. The time-
domain “signature” of the machine is shown in Figure 1.

|

|
Case | ! ‘ | | | ‘ |
Acceleration | [ |

Time

Figure 1

Superimposed on this coherent data though, may be random signals caused by a
multitude of sources: random case accelerations from floor vibration caused by
vehicle traffic, electrical noise in the measurement environment, a random dis-
turbance in the machine itself, or other causes.

In addition to the analysis of coherent signals, random signals (Figure 2) fre-
quently are characterized. Because different techniques are employed with
random signals, it is important to recognize when a signal is random. Bridge
vibrations caused by wind or traffic flow are random; the vibration of the com-
ponent of a vehicle driven over a bumpy road is random; electronic noise in an
amplifier is random.

Random | | ' gl &7
Vibration WSl 00 1 U oW l l 401




Another type of coherent signal requiring unique attention is a transient. Shown
in Figure 3 is the decaying oscillatory response of a mechanical system, excited
at a resonance by an impulse. The treatment of such signals is discussed later.

Transient

Figure 3

The expression of energy or power measurements is an important principle and
is reviewed here.

A power measurement is considered to have the dimensions of the square of a
signal. For instance, voltage? is synonymous with watts (across a one ohm
resistor). In the same sense, pressure?, acceleration?, or distance?, may be con-
sidered as expressions of power.

Power implies the flow of energy on a continuous basis and thus is a good de-
scription of a coherent or random signal. For a transient signal however, power
has little meaning and it is best to talk in terms of the energy change during the
period of the transient. Similar to the expression of power, energy is considered
to have dimensions of voltage? seconds, force? seconds, etc.
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The following sections are devoted to the measurement of each of the previously
described data types. Section lll deals with periodic data, Section IV with random
data, and Section V with transient data. Signal averaging and windowing topics are
introduced where applicable. Because of the continuity of the discussion and the
interdependence of the sections, it is suggested that the text be read in order.

1Il. PERIODIC DATA (Periodic in the Window)

To illustrate amplitude scaling of spectra in the HP Fourier Analyzer, a periodic
signal is used. Shown in Figure 4 is part of a 4-volt peak 10 Hz sine wave
sampled for a 2-second record X(t):

4V

0 .5 sec.

Figure 4
The Fourier transform Sy of this signal is shown in Figure 5A.

10 Hz 20 Hz

Figure 5A

Note that the magnitude of the Fourier transform is 2 volts peak instead of 4
volts peak as the sine wave sample would indicate. This is because the algorithm
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in the Fourier Analyzer is based on real time functions and has symmetry
properties about DC; therefore it is sufficient to calculate and display one half of
the spectrum, hence the 2-volt display.

Another example of this symmetry about DC appears in Figure 5B as:

L L.

-5 -4 -3 -2 - +1 +2 +3 +4 +5
1DC12 4

Figure 5B

Note that the DC component of the spectrum displays the total DC content of
the signal whereas the other frequency components display only one half their
respective spectral content.

One exception to this is the maximum frequency component Fp, .. which, like
the DC component, displays the total spectral content at this frequency.

The complex conjugate product of this voltage spectrum yields S Sy*, the
power spectrum (2 volts)? as illustrated in Figure 6.

| g
4\;2 ! i |
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B
L
10 Hz
Figure 6
Note that the 4 volts? value represents half of the total (mean-square) power of r

the signal which is 8 volts?.



In the next example, a calibrated 20 Hz sine wave is used as an input to the HP
Fourier Analyzer, with its amplitude set to 0 dBm (50 ohm). The power 0 dBm is
equivalent in this case to one milliwatt across a 50 ohm resistor, or 0.050 voltz.
On the HP Fourier Analyzer, the value displayed is thus half of 0.050 volt?, 0.025
volt? or -16 dB:

-16 dB = 10 logio .025

-16dB

10 dB/ e
d

v

Figure 7

Muliplying the power calculated by 40 thus allows the display (Figure 8) to be
calibrated in dBm (50 ohm):

0 dB = 10 logio (40 x .025)

Note in Figure 8 the second, third, and fourth harmonics at -38, -64, and -54
dBm, respectively.

0dBm _,

Figure 8



PERIODIC DATA (Non-Periodic in the Window)

:‘\nother example to consider is that of a 10-volt peak, 12.5 Hz sine wave sampled
in a 1-second record (Figure 9):

57 I
| 22 L
10V Peaiede e -_i A .__t_
R
s R
0 - 1 sec
Figure 9

Expecting a 5-volt peak spectral line as the Fourier transform, what actually is
obtained appears in Figure 10:

3.16V ™"

Figure 10

This is because the signal is non-periodic in the sample window and its fre-
quency falls exactly between two discrete spectral lines and thus “leaks” out to
adjacent lines. The log magnitude of this signal is shown in Figure 11.

The correct value should be 14 dB, representing 5 volts; however, the 10 dB dis-
played value is representative of the 3.15-volt result. Thus, there is a -4 dB error
due to the measured frequency falling 1/2 of a frequency channel away from a
discrete spectral line.
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0 24 Hz

Figure 11

The nature of the “leakage” of the signal’s power into adjacent frequency
channels is characteristic of the rectangular sampling window employed. The
Fourier transform of this window is shown in Figure 12 (positive half only).

e | LRNE
0 ;M} 5 Af 10 Af

Figure 12

Note the -4 dB roll-off at 0.5 Af from the center of the main lobe (at left edge of
Figure 12).
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Any number of windows may be employed, besides the rectangular window,!
but a very convenient window to implement is the “hanning” window, callable
by the HP Fourier Analyzer keyboard (Figure 13).

Figure 13

The Fourier transform of this window in Figure 14 indicates a faster roll-off of
the side lobes at the expense of broadening the main lobe. The amplitude
uncertainty is -1.4 dB at 0.5 Af from the center of the main lobe:

KN
o
@

i

10d8/ Ll AFEN
div Tl

0 10 Af

Figure 14

1See Reference 1.
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The 12.5 Hz, 10-volt peak signal sampled through a “hanning” window appears
as shown in Figure 15.

ov

Figure 15

Other windows may easily! be implemented on the HP Fourier Analyzer.

Shown below are windows 2 “P201” and “P3017, each capable of producing
amplitude accuracies of better than 99.9% (Figures 16-19).

1

Time Domain

Figure 16

10 d
B"diw

Frequency Domain

Figure 17
Window P201
13

1See Appendix L.
2See Reference 1.



Time Domain

Figure 18

10d8/ | T WL 4
div A= 1

' ) 10 af
0 Frequency Domain

Figure 19
Window P301

The following example should reinforce these principles. It is desired to measure
the power and frequency of a sine wave source. Knowing the approximate fre-
quency as 30 Hz and allowing Af to be 1 Hz, the measurement begins. The 1-
second record is taken, multiplied by window P301, and Fourier transformed. The
complex conjugate product yields in log magnitude what is shown in Figure 20.

14




0 64 Hz

Figure 20

The fact that both the 30 and 31 Hz lines are nearly equal magnitude reveals that
the frequency is close to 30.5 Hz. The amplitude value of 14 dB indicates a 25 V?
power. Doubling this value for true power gives 50 V2 or 50 watts (across a 1
ohm resistor).

If the source of this sine wave had been the acceleration of a shake table
measured with an accelerometer calibrated at 2 volts per g (32.17 ft/sec?), the
power would be expressed as:

2
50V2 e g = 125 g2
4 V2

15



IV. RANDOM DATA

In a previous example, a 4-volt peak 10 Hz sine wave was analyzed with 0.5 Hz
Af resolution. If the measurement is duplicated with 1 Hz Af resolution, the
result will be that illustrated in Figure 21.

0 50 Hz

Figure 21

The same answer is obtained regardless of the observation bandwidth of the
Fourier transform. The coherent signal’s power spectrum remains the same. Q

Such is not the case when a wideband signal is measured. In the following ex-

ample, a power spectrum ensemble average of 100 samples! of a random
noise source, band-limited at 150 Hz is displayed in Figure 22.

10 dB/div

0 250 Hz

Figure 22

The frequency resolution is 1 Hz. Now, the measurement is duplicated with a
2 Hz Af resolution and shown in Figure 23.

lSee Appendix II.
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10 dB/
div

0 250 Hz

Figure 23

Note that the magnitude is twice as large (3 dB). The same measurement per-
formed with various bandwidths of resolution would reveal that the magnitude
varies proportional to the bandwidth used. Thus, it is necessary to normalize the
measurement by dividing by the bandwidth to obtain invariant results on
the same data. These normalized measurements are power spectrum density
measurements (PSD).

Specifically on the HP Fourier Analyzer, the Fourier transform of a time signal
X(t) is displayed in frequency “channels” Af apart. Thus, the voltage distributed
in the frequency domain is:

Sy ———& , where Sy = F X(t)

channel

By applying the units conversion factor

1 channels -7 channels
Af Hz Hz ’
Sy volts o T channels - SyT volts
channel Hz Hz

The complex conjugate product yields

volts? or volts? seconds
Hz? Hz

which is the energy spectral density. Dividing by the period T yields the power
spectral density (PSD):

S, S, *T2 volts?
—xx = S¢Sy *T PO oo S
T Hz
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The total power in the band is simply:

Fmax

N/2 N/2
f 8,8, *Tdf ~ Af 3 8, 8,*T= 3 8,8.*
DC

As stated before in the sinusoidal case, half the power is displayed so the ob-
served value must be doubled (except for the DC and F),,4 components which

already display true values) to obtain the true power spectral density.

This can be demonstrated by measuring the power spectral density of a cali-
brated noise generator.

HP 3400A RMS VOLTMETER

[ HP FOURIER ANALYZER

Sl

HP 3722 NOISE GENERATOR

G 9] N :
°rr ° _ c
oy
Figure 24

The output voltage of the noise generator is set to 1 Vrms, or a total power of 1-
volt? (mean-square) and double-checked on a true-rms voltmeter, with an accuracy
of +1%,.

The HP Fourier Analyzer corroborates this result (see Figure 25) with an

ensemble averagel of 400 samples of a noise generator output, band-limited
at 500 Hz (the cutoff frequency).

1See Appendix III1.
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-27 dB

10 dB!div

0 1000 Hz

Figure 25

The PSD measured at the low end of the band was:
00194 V2/Hz
which is in agreement with the expected value of approximately:

1V2 B V2
500 Hz = e Hz

The power spectral density summed over all positive frequencies yields:

Fmax N/2 N/2
f SxSx*T df — ALY SxSx*T =) SxSx* volts?,
DC

half the total power.
Summing the power in all frequency channels and doubling yields:

992 V2

as the total power1 measured, which is within the accuracy of the rms
voltmeter.

1See Appendix TV
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AVERAGING

The technique of averaging is useful in two areas: (1) when the signal itself is
random and must be deseribed statistically, and (2) when there is a deterministic
signal in random noise to be detected. Averaging random signal power spectra
vields an approximately normal distribution about the mean value of the power

level according to the Central Limit Theorem.! For many averages M, it can
be shown that:

o 1
K Javerage=+/M
Where M = number of averages .

i = mean signal power
o = one standard deviation from

In the following example, averaged power spectra measured from a white noise
generator set to 50 Hz bandwidth. Ensemble averages of 10 and 100 samples are
shown in Figures 26 and 27, respectively.

|
4|
|
_I._ |
10 dB T s O
bk ; :
R 10 samples
0 100 Hz
Figure 26
|
10 dB, -~
;div |
M | 100 samples
|
S |
|
100 Hz
Figure 27

1See Reference 3
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Note that the variance of the data decreases with more averages. Figure 28
depicts this variance.

+1.960 1—b

£10% M \
-1.960 }_'/
—30

Figure 28

With 99.7% confidence, the true mean will fall within 3¢ around the displayed
averaged mean. A confidence of 95% implies +1.96¢, so based on the objective
of computing the true mean with no more than #10% inaccuracy with a 95%

confidence:

1.960 1.96
10% = .10 = —_— = , or
L v M

M = 384 averages necessary.

For a coherent signal in random noise, the following example (Figure 29) de-
monstrates the technique. The wideband signal to noise ratio is measured to be
-17 dB for a coherent signal in white noise band-limited at 50 Hz. Using a fre-
quency resolution of 1 Hz, it may be assumed that the noise power falls in the
first 50 channels of the data block (in the frequency domain).

For simplicity, assume the coherent signal is periodic in the window and its
spectrum occurs in one frequency channel. Now, only 1/50 of the noise interfers
with the signal’s detection, representing a 17 dB improvement as a result of

processing gain.

Also, the signal-to-noise ratio now (narrow band) is 0 dB, or the signal and noise
power are equal.
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HP FOURIER ANALYZER

HP 3300A FUNCTION GENERATOR

o o C

600€2

HP 3722A NOISE GENERATOR

C e & 3

b e e o to
]
60082

Figure 29
Shown (Figures 30-33) are the signal alone and with noise. (A 0.1-volt peak sine
wave is measured in a 0.5-volt rms noise level. Half of the power is displayed in

each case):
-26 dB— 5
10dB/ ;,
0 100 Hz
.1V peak signal
Figure 30
26 dB— |- _ b o]
i = [Felins
' (= =y PO NS
1 1 | 1 |
' e
10 dB/ - TR ST
div | |
i 0 L 25 SAMPLES
I [
|
0 Signal and Noise 100 1z

Figure 31
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-26 dB™ | !
[
|
|
{7559 | | . '
| ety |
T | = 100 SAMPLES
| I
|
i
i
0 100 Hz
Signal and Noise
Figure 32
=23 dB —
-26dB — ==
900 SAMPLES
0 100 Hz
Signal and Noise

Figure 33

Note that the signal appears as 3 dB above the noise level, because the total
power is double at that frequency. The reduction of the noise variance to make
the signal discernible follows the same statistical basis as described on pages 20
and 21,
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WINDOW EFFECT

The effect of the window in the case of a random signal can be conveniently
viewed as a filter about each spectral line. This filter's effect can be expressed in
terms of the area under the square of the filter’s shape (or lineshape). This is
hecause the noise (or wideband signal) power passed is proportional to the area
under the square of the filter lineshape (Figure 34).

AMPLITUDE?

{

AREA

n - FREQUENCY
Figure 34

The rectangular sampling window used in the HP Fourier Analyzer (Figure 35)
has an area under the square of the lineshape equal to 1.

— 71_\_ il

-5 Af ' 0 +5 Af

Figure 35

In the case of a hann window, the area under the square of the lineshape is
3/8.1

Correction for a window is made as follows:

Measured PSD

True PSD =

area under window lineshape?

1See references 1 and 2 for various window characteristics
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MEAN-SQUARE Versus ROOT-MEAN-SQUARE

Spectral densities measured using analog techniques frequently are expressed
as:

voltsyms
v/ Hz

rather than

volts? (mean-square)
Hz

These factors must be considered when expressing comparable digital and
analog results.

25



V. TRANSIENT DATA

Because signal transients last only a finite length of time, their expression in
terms of total energy or energy density is more meaningful than a power concept.
As stated before, energy spectral density is:

volts? seconds

SxSx*T?
XWX Hz

Summing all these spectral components from DC to F,,5 and doubling gives
the approximate total energy:

F
max N/2

2 f SeS*T2df ~ 2Af Y §,S,*T

DC

The same total energy in the time domain is obtained by summing the squares of
each voltage sample over the record T:

T N
fxzdt—-m; 2}{2,
(8]

by Parseval’s Theorem:

N N/2
2 AfeT> ) S S *

[
=
™
ke
i

N/2
2 AfeT ) S S.*

Sk
™Mz
)
I

4 N N/2
NLE =2 3 58

since AT S — and T = —_—
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Force

0 1 second

Figure 36

An example of this is the measurement of a force impulse caused by a hammer
blow. In the time domain, the force is illustrated in Figure 36.

[
10 dB/ | oy
di

| i DN
v —I_' 3 _ I= i |

0 128 Hz

Figure 37

In the frequency domain, the power spectrum appears as seen in Figure 37.

Summing over the frequency channels (not including DC and Fpa4),
doubling for total energy and adding the DC and F,,,x components gives:

.0026 volts? seconds

The results obtained by squaring the time signal and summing over the record

interval is:
0026 volts? seconds,

which demonstrates Parseval’s Theorem.

A conversion factory of 20 b per volt from the force cell calibration yeilds an
energy value of:

400 1b2
(.0026 volt? seconds) e = 1.04 1b? seconds
volt?
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VI CONCLUSION

As a conclusion to the discussion, an example measurement is made to tie in
each of the previous topics.

It is desired to determine the vertical displacement PSD of an automotive
component driven over a road course. A tape recording of the signal from an
accelerometer mounted on the component provides the data, with a record
length of 30 minutes.

For convenience, Table I is repeated here to emphasize the method of data
reduction. First, this data is classified as random, because the road is bumpy

and known to excite the vehicle in a random fashion. A power spectral density
measurment is required, averaged to produce statistical certainty.

A frequency resolution of 0.5 Hz out to a frequency of 100 Hz is required, so a
data blocksize of 1024 points (Af = 0.5 Hz and Fpax = 256 Hz) and a 48 dB/
octave anti-aliasing filter set at 100 Hz is adequate to insure an 80 dB dynamic

range meﬂsurement.l
The sampling period T for each data record is 2 seconds, so ensemble averaging
400 records will insure good statistical certainty of a representative sample.

Amplitude accuracy of within one decibel is desireable so the data is “hanned”
2

twice.

Using the keyboard program in Appendix V yields a calibrated log display where:
0dB=1 inch?/Hz
-10 dB = .1 inch?/Hz

-20 dB = 01 inch®/Hz
ete.

Displacement power was obtained from the acceleration power measured by
double-integrating digitally, or specifically by dividing by f* because:

acceleration?
displacement?= ———
w‘t

A correction factor in the keyboard program was used to provide the correct
calibration.

1Gee reference 2 for a full discussion of aliasing.

2See reference 2
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Table |. Measurement Method
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The factor used in the keyboard program was achieved as follows:

(1) The displacement power spectrum was divided by the analysis band-
width used 0.5 Hz to make a displacment power spectral density.

(2) The window used (two hannings) has an area under the square of the

lineshape equal to 35/128.1  This is also divided into the spectrum
measured.

(3) To correct for symmetry about DC, the data is multiplied by 2.

(4) Because 400 records were ensemble summed, the data is divided by 400
to produce an ensemble average.

(5) To calibrate the displacement PSD in inches?/H, the data is multiplied
by 9563 obtained from the following (X = displacement, A = acceleration):

386.06 in/sec? | ?
xa _ A _ (A g/volt)? (__TSC_)
w2 ls‘.qu f"

Because the acceleration power spectrum was divided by f', the above reduces
to:

inches?
X2 = 95.63 A?
volt?

The accelerometer calibration A was 10 g/volt, therefore

inches?
X2 = 9563
volt?

Combining all of the above factors produces a factor of 349.7 used in the key-
board porgram:

Af . Number of
s d t
Factor Bandwidth Window Symmetry Samples

o ()0 6

The results have a statistical certainty based on the 400 ensembles, or:

Calibration

1
" M V400 20

For a 95% confidence level,

1.960 1.96
= = 9.8%
L 20

Therefore, it can be said with 95% confidence that the results are +9.8% (with-
in 1/2 dB).

1See reference 1
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If, for example (Figure 38), a broad peak centered at 7 Hz is interesting, inte-

gration of the PSD plot over specific limits will allow definition of the motion
within that band.

14 Hz

2.5 Hz bandwidth

Figure 38

Summing the PSD over five spectral lines about the 7 Hz line results in .064
inches? total.

This corresponds to a motion of

. .253 inchesymg

for the 2.5 Hz bandwidth around 7 Hz.
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APPENDIX |
Window implementation.

Several of the windows in Reference 1 may be keyboard-called when User Pro-
gram 3202 is made part of the Fourier system. A typical call is

USER PROGRAM 3202 SPACE 1 SPACE 301
where window P301 is desired in data block 1

This and/or other user programs may be merged with the Fourier system with the
System Overlay Generator. See the HP Fourier Analyzer User Program Library
for a list of available programs.

33



APPENDIX 1l
POWER SPECTRUM ENSEMBLE
AVERAGE OF 100 SAMPLES

PROGRAM CONTENTS CONTENTS PURPOSE OF
COMMANDS BLOCK 0 BLOCK 1 COMMAND
LABEL 0 Establish
Program Start
CLEAR 1 Cleared Clear Sum
Block
LABEL 1 Cleared Establish Loop
Label
ANALOG IN Current Time Cleared Acquire Data,
0 SPACE 1 Record Display Sum
FOURIER Freq Spectrum Cleared Transform Data
of Data
POWER Freq Spectrum Power Spectrum | Compute Power
SPECTRUM of Data Sum of Data Spectrum and
Samples Ensemble
Sum 100
Samples
COUNT 1 Freq Spectrum Power Spectrum
SPACE 100 of Data Sum of Data
Samples
MULTIPLY 1 Power Spectrum | Correct for
SPACE 2 Sum of Data Symmetry
Samples
DIVIDE 1 Power Spectrum | Compute
SPACE 100 Ensemble Average
Average
LOG MAG 1 Power Spectrum | Log Magnitude
Ensemble Data
Average
END Power Spectrum | END
Ensemble
Average

Block Size = 512, Af=1 Hz
Block Size = 256, Af = 2 Hz

Display Horizontal Sweep 10.24 em

34
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APPENDIX 1l

a POWER SPECTRAL DENSITY ENSEMBLE
AVERAGE OF 400 SAMPLES

PROGRAM CONTENTS CONTENTS PURPOSE OF
COMMANDS BLOCK 0 BLOCK 1 COMMAND
LABEL 0 Establish
Program Start
CLEAR 1 Cleared Clear Summing
Block
LABEL 1 Establish Loop
Label
ANALOG IN Current Time Acquire Data,
0 SPACE 1 Record Display Sum
FOURIER Freq Spectrum Transform Data
of Data
. . POWER Power Spectrum| Compute Power
SPECTRUM Sum of Data Spectrum and
Ensemble
Sum 400
COUNT 1 Power Spectrum| Samples
SPACE 400 Sum of Data
MULTIPLY 1 Power Spectrum | Correct for
SPACE 2 Sum of Data Symmetry
DIVIDE 1 Power Spectrum| Compute
SPACE 400 Ensemble Avg. Average
DIVIDE 1 PSD Ensemble Compute Power
SPACE 10 Average Spectral Density
LOG MAG 1 PSD Ensemble Log Magnitude
Average of Data
END PSD Ensemble END
Average

Block Size = 256 } F o ax = 1280 Hz
Af =10 Hz

Display Horizontal Sweep 12.8 cm
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APPENDIX IV

An alternate method of calculating the total power (or energy) of a signal besides
the power spectrum is the use of channel zero of the autocorrelation function.
A detailed discussion of this may be found in Reference 2.
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APPENDIX V

EXAMPLE MEASUREMENT PROGRAM

PROGRAM CONTENTS CONTENTS CONTENTS PURPOSE OF
COMMANDS BLOCK 0 BLOCK 1 BLOCK 2 COMMAND
LLABEL 0 i Establish

Program Start
CLEAR 1 Cleared Clear Summing
Block
LABEL 1 Establish Loop
Label
ANALOG IN| Current Time Acquire Data
Record
HANN " Window
HANN P Data
FOURIER Frequency Transform
Spectrum of Data
Data
POWER Power Spec- Compute
SPECTRUM trum Sum of Power Spec-
Data trum and
Ensemble
COUNT 1 i Sum 400
SPACE 400 Samples
DIVIDE 2 Displacement Convert Ac-
Power Spec- celeration
tral Ensemble Spectrum to a
Sum Displacement
Spectrum
MULTIPLY 0| Calibrated
SPACE 3497 | Displacement Calibrate
PSD Results
DIVIDE 0 Ensemble
SPACE 10 Average
LOG MAG " Log Magnitude
of Data
DISPLAY 0 Expanded
SPACE 0 " Display to show
SPACE 200 DC to 100 Hz
END " End
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Blocksize = 1024 P yna 256 He
Af=0.5 Hz

The function f* may be calculated easily and stored in a data block (block 2) for
ready division into the acceleration power spectrum. The following keyboard
steps will produce f! (note that the value entered is equal to the resolution Af):

KEYBOARD CONTENTS CONTENTS PURPOSE OF
COMMAND BLOCK 0 BLOCK 2 COMMAND
CLEAR Cleared
KEYBOARD 0 4 Block fill Channel 2
SPACE 1 through 512
SPACE 512
KEYBOARD -1 ¥ 10! Scale factor in
SPACE 4 Rect. Freq. Domain
5 0.5 in each Sx 10
channel
INTEGRATE f Calculate f for

each channel

MULTIPLY 2 Calculate f2 for
each channel

MULTIPLY f Calculate f* for
each channel

STORE 2 4 f4 Store for Future
Divide Operation
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