
Using Linux to Control LXI
Instruments Through TCP
Application Note 1465-29

Table of contents
LXI and LAN-based Instruments 2
TCP/IP protocols used for instrument
 control 2
VXI-11 or TCP sockets:
 Which should you use? 2
Sockets and transport options 2
API calls for socket communication 3
Network order 3
Nagle’s algorithm/TCP_NODELAY 4
Control port/Device clear 5
SRQs (Service Requests) 6
Summary 6

The move to PC-standard I/O
interfaces is a key element of
Agilent Open, which is a versatile
combination of hardware, I/O, and
software tools that make it easy
to create, enhance and maintain
systems. You can take advantage
of this strategy, especially if you
are using Linux as the operating
system for your test solution,
because support for LAN and USB
interfaces is built into the operating
system. Using Linux to Control LXI
Instruments Through TCP is part of
a series of application notes designed
to explain how to control your test
instruments under Linux. Example
code is available for download at
http://www.agilent.com/fi nd/linux.

2

LXI and LAN-based
instruments
Agilent has been offering instruments
with LAN interfaces for many years.
In 2004, with the inception of the
LXI Consortium1, momentum grew
and LAN-based instruments became
increasingly popular and widely
accepted in the test industry.

Some of Ethernet’s advantages are
obvious, like its low cost and suit-
ability for distributed and remote
applications. Other aspects are less
obvious but equally important. These
include exceptional performance
with Gigabit Ethernet and a new
level of fl exibility enabled by multi-
cast (one-to-many), peer-to-peer and
quasi-simultaneous communication.

The move towards Ethernet is great
news for Linux (and other non-
Windows operating systems) users
because they can use the operating
system’s built-in standard API to
control their instruments. Interfaces
like GPIB or MXI (specifi c to the
test industry) or PCI cards require
special driver software for a given
operating system fl avor—which may
not be available.

TCP/IP protocols used for
instrument control
In 2000, the VXIplug&play Alliance2
added support for LAN-based instru-
ments to its VISA specifi cations.
Two popular methods of instrument
control via Ethernet were adopted
by VISA: VXI-113 and “direct” TCP
socket communication (see Figure 1).

VXI-11 was originally designed to
mimic the capabilities of GPIB,
including those based on hardware
signals, such as service requests
(SRQs), serial polls, device triggers
and device clears. It was fi rst used in
LAN-to-GPIB gateways, before native
LAN-based instruments

Often, it is a matter of prefer-
ence. However, VXI-11 is the more
complex (higher-layer) protocol (as
shown in Figure 1). Consequently,
direct socket communication will
provide better performance in
many situations, especially if the
actual measurement time is short
and you conduct many individual
transactions. Furthermore, as the
examples in this document will show,
sockets are considerably easier to
use. Therefore, if they are supported
by the instrument, sockets are the
recommended approach for native
LAN instruments.

Sockets and transport
options
A socket is an “endpoint for commu-
nication” between two systems,
similar to a post box or a telephone
number. Communication across
sockets usually works both ways
(duplex) and, like device drivers and
other methods of communication,
it is based on a stream model: data
is transferred as a stream of bytes
(characters), and the underlying
API works in much the same way as
reading and writing data to a disk
fi le works.

were available. It is based on remote
procedure calls (RPC). A single
server like the LAN-to-GPIB gateway
can facilitate access to a number of
logical devices, such as GPIB instru-
ments behind the gateway. Although
VXI-11 was designed for LAN-to-GPIB
gateways, it is often supported in
native LAN-based instruments as
well for compatibility. You can learn
more about this type of connection
in Agilent Application Note 1465-28,
Using Linux to Control LXI
Instruments Through VXI-11.

The other method of instrument
control is socket communication,
where an instrument is controlled
through a direct TCP socket connec-
tion in a stream-oriented manner,
which is similar to writing to and
reading from a disk fi le.

VXI-11 or TCP sockets:
Which should you use?
VXI-11 is used exclusively if you are
accessing GPIB instruments through
a LAN-to-GPIB gateway like the
Agilent E5810A or if you are using
a PC as a gateway. However, many
native LAN instruments support both
VXI-11 and TCP socket communica-
tion. Which is the better option?

Figure 1. TCP/IP layers and their use for instrument control

ApplicationApplication User application

TCP socket
communicationVXI 11

(based
on RPC)

7

XDRPresentation Exchange of data in a platform
independent format6

ONC/RPCSession Distributed software
(calling remote functions)5

UDP/TCPTransport Data integrity
(sequence checking retransmission…)4

IPNetwork Transfer of data across many
networks3

IEEE 802.3 (Ethernet)Data link Transfer of a data frame within a
single network2

IEEE 802.3z (GB ethernet)Physical Transfer of a bit stream
(voltages, bitrate…)1

3

The operating system takes care
of the “ugly details” for us. For
example, it wraps chunks of the byte
stream into IP packets and sends
them to the destination system. With
IP at the network layer, as shown
in Figure 1, there are two alterna-
tive protocols that are used at the
transport layer: TCP and UDP.

TCP is “connection-based:” the
operating systems make sure that
packets are transmitted successfully
(by way of an acknowledgment)
and put back in order (by way
of sequence numbers). UDP, on
the other side, is connectionless.
Theoretically, packets could get lost
(there is no acknowledgment) and
they might arrive at the destination
in the wrong order. Given these
drawbacks, instrument control is
typically done through TCP and we
live with TCP’s slight increase in
overhead compared to UDP.

By convention, Agilent instruments
and other vendors’ products use
TCP and port 5025 for control.

API calls for socket
communication
As mentioned above, socket
communication is supported by the
Linux operating system—and it is
straightforward. Table 1 lists basic
operating system calls for socket
communication.

Figure 2 shows an example program
that establishes a TCP connection
to an instrument and retrieves the
instrument’s ID string.

The fi rst step is to create a socket for
a particular protocol family (in this
case, PF_INET, i.e. IPv4) and session
type (here, SOCK_STREAM, i.e. TCP)
through a call to socket(). This
reserves and initializes appropriate
system resources for the TCP link.

The connect() call establishes the
connection to the server. It accepts
a pointer to a data structure that
contains the details for the wanted
connection. The port number and IP
address of the server need to be speci-
fi ed in “network order” (see below).

At this point, we are ready to
communicate with the instrument.
Commands are sent through a call to
send(). Note that SCPI strings are
terminated with a “\n” (new line)
character. The instrument’s response
is read through a call to recv(). It
also ends with a new line character—
a zero character needs to be appended
to turn the response into a C string
(at least if you want to use C string
functions, such as printf(), for
post processing).

Finally, the socket is closed through
a call to close().

The recv() call will only return
if data is available (or after data
becomes available). In other words,
there is no integrated timeout mecha-
nism. It is therefore essential to
implement proper timeout handling.
One way of doing so is to use the
select() call described in a later
section of this document.

Network order
Ethernet communication is platform-
independent by design. This indepen-
dence is achieved by defi ning the
overall format of Ethernet packets,
as well as the byte ordering of indi-
vidual data fi elds in the packets, like
the IP address and the port number.
In this context, the chosen byte
order (big-endian4) is also known as
“network order.”

When using an API call like
connect(), the data passed in as
the IP address and the port number
is used directly by the system
for building the appropriate TCP
messages. Consequently, the param-
eters need to be passed to the API
function in network order.

A number of functions are available
to convert data types from the native
processor format to network order
(and back). For example, htons() is
used to convert the port number (an
unsigned short) to network order.
Also, inet_addr(), a function that
converts an IP address string (in dot
notation) to a 32-bit unsigned integer,
returns the latter in network order.

Table 1. Basic Linux system calls for socket communication

Operating system call Description
socket() Creates a socket on the client (controller) for a particular

protocol family (for example, IPv4 or IPv6) and protocol type
(connectionless/UDP or connection-based/TCP).
See socket(2) man page for details.

connect() Initiates a socket connection to a given server (referenced
by an IP address and port number).
See connect(2) man page for details.

send() Sends a message (for example, a SCPI command) to the
instrument.
See send(2) man page for details.

recv() Reads data (for example, measurement results) from the
instrument.
See recv(2) man page for details.

close() Closes the connection initiated by connect().
See close(2) man page for details.

4

Nagle’s algorithm/
TCP_NODELAY
Most operating systems, including
Linux, use Nagle’s algorithm (named
after its inventor, John Nagle, see
RFC8965) to make TCP communica-
tion more effective. With this algo-
rithm, the sending of small packets
is delayed for short periods of time.

The idea is that sending several small
pieces in one combined packet is
more effective than sending indi-
vidual packets (given the overhead
of TCP and Ethernet).

This works great for many applica-
tions. However, using this algorithm
often is not desirable in measure-
ment applications due to the increase
in latency. The setsockopt()

system call can be used to set the
TCP_NODELAY option for a given
socket. This will instruct the system
not to use Nagle’s algorithm (and
send even small messages imme-
diately). The code fragment shown
in Figure 3 sets the TCP_NODELAY
option.

setsockopt() can also be used to
modify various other parameters,
such as the send/receive buffer size
allocated for a socket connection.
See the setsockopt(2) man page
for further information.

Figure 2. Basic SCPI communication through TCP

int MySocket;
if((MySocket=socket(PF_INET,SOCK_STREAM,0))==-1) exit(1);

struct in_addr {
 unsigned long s_addr;
};
struct sockaddr_in {
 short int sin_family; // Address family
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Padding
};
struct sockaddr_in MyAddress;

// Initialize the whole structure to zero
memset(&MyAddress,0,sizeof(struct sockaddr_in));
// Then set the individual fields
MyAddress.sin_family=PF_INET; // IPv4
MyAddress.sin_port=htons(5025); // Port number used by most instruments
MyAddress.sin_addr.s_addr=inet_addr(“169.254.9.80”); // IP Address

// Establish TCP connection
if(connect(MySocket,(struct sockaddr *)&MyAddress,
 sizeof(struct sockaddr_in))==-1) exit(1);

// Send SCPI command
if(send(MySocket,”*IDN?\n”,6,0)==-1) exit(1);

// Read response
char buffer[200];
int actual;
if((actual=recv(MySocket,&buffer[0],200,0))==-1) exit(1);
buffer[actual]=0; // Add zero character (C string)
printf(“Instrument ID: %s\n”,buffer);

// Close socket
if(close(MySocket)==-1) exit(1);

Figure 3. The TCP_NODELAY option minimizes latency by deactivating Nagle’s algorithm.

#include <netinet/tcp.h>
#include <netinet/in.h>

int StateNODELAY = 1; // Turn NODELAY on

setsockopt(MySocket,IPPROTO_TCP,TCP_NODELAY,
 (void *)&StateNODELAY,sizeof StateNODELAY);

5

Control port/Device clear
In addition to the “regular” socket
connection used above, most Agilent
instruments support a control
connection. This separate TCP link
is used for messages that require
immediate delivery, namely device
clear messages and SRQs (service
requests).

The port number to be used for the
control connection is not standard-
ized. However, a special query
command, SYST:COMM:TCPIP:
CONTROL? (sent through the regular
connection), is available to query the
port number to use for the control
connection for a given instrument.

Note: Not all instruments support a
control connection. Therefore, it is
important to verify the instrument’s
response. A valid port number
(greater then zero) indicates that the
control connection is supported by
the instrument.

One of the important functionalities
enabled through the control connec-
tion is a “device clear” that clears
the instrument’s communication
buffers. It often can be used to regain
control over the instrument when the
communication gets “stuck” due to
communication problems.

A device clear is initiated by sending
the string “DCL\n” through the
control connection. Note that the
instrument echoes the command
back as an acknowledgment.

The example code shown in Figure 4
sets up a link to the control port and
uses it to clear the device.

Figure 4. Using the control port to clear an instrument

void send_string(int MySocket,char string[])
{
 if(send(MySocket,string,strlen(string),0)==-1) {
 /* Do error handling here */
 }
 return;
}

void read_string(int MySocket,char *buffer)
{
 int actual;
 if((actual=recv(MySocket,buffer,200,0))==-1) {
 /* Do error handling here */
 }
 else buffer[actual]=0;
 return;
}

send_string(MySocket,”SYST:COMM:TCPIP:CONTROL?\n”);
char buffer[200];
read_string(MySocket,buffer);
unsigned int ControlPort;
sscanf(buffer,”%u”,&ControlPort);
printf(“Control Port: %u\n”,ControlPort);

int MyControlSocket;
if((MyControlSocket=socket(PF_INET,SOCK_STREAM,0))==-1) {
 /* Do error handling here */
}

struct sockaddr_in MyControlAddress;
memset(&MyControlAddress,0,sizeof(struct sockaddr_in));
MyControlAddress.sin_family=PF_INET; /* IPv4 */
MyControlAddress.sin_port=htons((unsigned short)ControlPort);
MyControlAddress.sin_addr.s_addr=inet_addr(“169.254.9.80”);
if(connect(MyControlSocket,(struct sockaddr
*)&MyControlAddress,
 sizeof(struct sockaddr_in))==-1) {
 /* Do error handling here */
}

send_string(MyControlSocket,”DCL\n”);
read_string(MyControlSocket,buffer);
if(strcmp(buffer,”DCL\n”)==0)
 printf(“DCL\\n received back from instrument...\n”);
else printf(“Response: %s\n”,buffer);

if(close(MyControlSocket)==-1) {
 /* Do error handling here */
}

6

SRQs (Service Requests)
As mentioned above, the control port
is also used for SRQs. Instruments
use an SRQ to signal the system
controller when they need attention
(for example, when an error occurs
or when measurement results are
available in the instrument’s output
buffer).

The instrument raises an SRQ by
sending the string “SRQ” followed by
the current value of the instrument’s
status byte (for example, “SRQ
+128\n”). The test application can
then react accordingly.

The mechanism described above
usually requires some form of
asynchronous programming since
the application does not know when
the instrument will generate an SRQ.
This is often implemented using an
“SRQ handler” which is set up and
then goes to sleep (is suspended)
until data becomes available on the
control connection (meaning, the
instrument has likely raised an SRQ).

One way to achieve this is through
the select()6 function. select()
sleeps until one or several fi le
descriptors (in this case, the handle
to the control socket connection)
change status. More exactly, as used
below, select() will return (wake
up) when data becomes available
(or if the timeout expires).

The example code shown in Figure 5
uses select() to wait for SRQs.

First, the set of fi le descriptors to be
monitored by select() is set up.
FD_ZERO and FD_SET are macros
that are available to manipulate the
fd_set structure. In this case, only
the control port handle is added to
the structure.

Next, the instrument is set up to
generate an SRQ. In this example,
which is based on the 34410A multi-
meter, the operation complete bit is
used to trigger an SRQ.

At this point, select() is used to
wait for data to become available on
the control socket connection.

Note that the select() function
suspends the current thread until
data becomes available (or the
timeout expires). Normally, moni-
toring the control port would be
done in a separate thread.

Summary
If sockets are available with your
instrument, you may want to choose
to use them instead of the VXI-11
protocol. They offer the same func-
tionality at higher performance and
they are straightforward to use.

1 For details about LXI (LAN Extensions
for Instrumentation) and the LXI
Consortium, see
http://www.lxistandard.org

2 For details about VISA and the
VXIplug&play Alliance, see
http://www.vxipnp.org

3 For details about VXI-
11, see http://www.vxibus.
org/freepdfdownloads/vxi-11.pdf

4 In a big-endian system, the most signifi -
cant byte is stored fi rst (at the lower
address). Intel processors use little-
endian (least-signifi cant byte fi rst).

5 For details about RFC896, visit
http://www.ietf.org/rfc

6 See select(2) man page for details.

Figure 5. Using select() to wait for an SRQ

fd_set MyFDSet;
struct timeval tv;
int retval;

tv.tv_sec=10; tv.tv_usec=0; // Timeout

FD_ZERO(&MyFDSet); // Clear set
FD_SET(MyControlPort,&MyFDSet); // Add control port

// Cause an SRQ
send_string(MySocket,”*ESE 1\n”); // OPC sets standard event bit
send_string(MySocket,”*SRE 32\n”); // Standard event will cause
SRQ
send_string(MySocket,”CONF:FREQ\n”); // Do something...
send_string(MySocket,”*OPC\n”); // Set OPC when done

retval=select(MyControlPort+1,&MyFDSet,NULL,NULL,&tv);
if(retval==-1) {
 // Do error handling here
}
if(retval==1)
{
 // One connection changed status... Must be control port
 printf(“Data available\n”);
 read_string(MyControlPort,buffer);
 printf(“Data read: %s\n”,buffer);
}

7

Related Agilent literature
The 1465 series of application notes provides a
wealth of information about the creation of test
systems, the successful use of LAN, WLAN and
USB in those systems, and the optimization and
enhancement of RF/microwave test systems.
All of the individual notes listed below are also
available in a compilation:

• Test-System Development Guide:
A Comprehensive Handbook for Test Engineers

 (pub no. 5989-5367EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-5367EN.pdf

Test System Development
• Test System Development Guide:

Application Notes 1465-1 through 1465-8
 (pub no. 5989-2178EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2178EN.pdf

• Using LAN in Test Systems: The Basics
 AN 1465-9 (pub no. 5989-1412EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems:
Network Configuration

 AN 1465-10 (pub no. 5989-1413EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems: PC Configuration
 AN 1465-11 (pub no. 5989-1415EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and
Measurement Environment

 AN 1465-12 (pub no. 5989-1417EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1417EN.pdf

• Using SCPI and Direct I/O vs. Drivers
 AN 1465-13 (pub no. 5989-1414EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1414EN.pdf

• Using LAN in Test Systems: Applications
 AN 1465-14 (pub no. 5989-1416EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1416EN.pdf

• Using LAN in Test Systems:
Setting Up System I/O

 AN 1465-15 (pub no. 5989-2409)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2409EN.pdf

• Next-Generation Test Systems:
Advancing the Vision with LXI

 AN 1465-16 (pub no. 5989-2802)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2802EN.pdf

RF and Microwave Test Systems
• Optimizing the Elements of an RF/Microwave

Test System
 AN 1465-17 (pub no. 5989-3321)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3321EN.pdf

• 6 Hints for Enhancing Measurement Integrity
in RF/Microwave Test Systems

 AN 1465-18 (pub no. 5989-3322)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3322EN.pdf

• Calibrating Signal Paths in RF/Microwave
Test Systems

 AN 1465-19 (pub no. 5989-3323)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3323EN.pdf

LAN eXtensions for Instrumentation (LXI)
• LXI: Going Beyond GPIB, PXI and VXI
 AN 1465-20 (pub no. 5989-4371)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4371EN.pdf

• 10 Good Reasons to Switch to LXI
 AN 1465-21 (pub no. 5989-4372)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4372EN.pdf

• Transitioning from GPIB to LXI
 AN 1465-22 (pub no. 5989-4373)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4373EN.pdf

• Creating hybrid systems with PXI, VXI and LXI
 AN 1465-23 (pub no. 5989-4374)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4374EN.pdf

• Using Synthetic Instruments in Your Test System
 AN 1465-24 (pub no. 5989-4375)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4375EN.pdf

• Migrating System Software from GPIB to
LAN/LXI

 AN 1465-25 (pub no. 5989-4376)
 http://cp.literature.agilent.com/litweb/

pdf/5989-4376EN.pdf

• Modifying a GPIB System to Include LAN/LXI
 AN 1465-26 (pub no. 5989-6824)
 http://cp.literature.agilent.com/litweb/

pdf/5989-6824EN.pdf

Using Linux in Your Test Systems

Example code is available for download at
http://www.agilent.com/find/linux.

• Using Linux in Your Test Systems: Linux Basics
 AN 1465-27 (pub no. 5989-6715)
 http://cp.literature.agilent.com/litweb/

pdf/5989-6715EN.pdf

• Using Linux to Control LXI Instruments
Through VXI-11

 AN 1465-28 (pub no. 5989-6716)
 http://cp.literature.agilent.com/litweb/

pdf/5989-6716EN.pdf

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confi dence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/fi nd/removealldoubt

Agilent Email Updates

www.agilent.com/fi nd/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/fi nd/agilentdirect
Quickly choose and use your test
equipment solutions with confi dence.

Agilent
Open

www.agilent.com/fi nd/open
Agilent Open simplifies the process of
connecting and programming test systems
to help engineers design, validate and
manufacture electronic products. Agilent
offers open connectivity for a broad range
of system-ready instruments, open industry
software, PC-standard I/O and global
support, which are combined to more
easily integrate test system development.

www.lxistandard.org
LXI is the LAN-based successor to GPIB,
providing faster, more effi cient connec-
tivity. Agilent is a founding member of the
LXI consortium.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
offi ce. The complete list is available at:
www.agilent.com/fi nd/contactus

Americas
Canada 877 894 4414
Latin America 305 269 7500
United States 800 829 4444

Asia Pacifi c
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 81 426 56 7832
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700
Germany 01805 24 6333*
 *0.14€/minute
Ireland 1890 924 204
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21) 8113811 (Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/fi nd/contactus
Revised: May 7, 2007

Product specifi cations and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2007
Printed in USA, June 13, 2007
5989-6717EN

