
Using Linux to Control
USB Instruments
Application Note AN 1465-30

The move to PC standard I/O
interfaces is a key element of
Agilent Open, which is a versa-
tile combination of hardware,
I/O, and software tools that
make it easy to create, enhance
and maintain systems. You can
take advantage of this strategy,
especially if you are using Linux
as the operating system for your
test solution, because support

for LAN and USB interfaces is
built into the operating system.
Using Linux to Control USB
Instruments is part of a series
of application notes designed to
explain how to control your test
instruments under Linux.

Table of contents
Overview: USBTMC and
 USB-Based Instruments 2
Basic USB Terminology 2
Communicating with a
 USBTMC Instrument 3
Registration with the USB Core 5
Access to the Driver from User Space 6
Compiling and Installing
 the USBTMC Driver 8
Using the USBTMC Driver 9
Summary 10

Overview:
USBTMC and
USB-Based Instruments
With the Agilent Open pro-
gram, which aims to simplify
connectivity to measurement
equipment for test system
developers, Agilent strongly
advocates the move to standard
PC interfaces (especially LAN
and USB). Many of Agilent’s
newer instruments support
Ethernet, USB and GPIB.

Basic support for USB is built
into today’s Linux kernels in the
form of low-level USB drivers
(kernel modules) that control
the computer’s USB chipset
(see Figure 1). However, these
drivers do not offer a low-level
programming interface to the
user (applications running in
user space). Instead, they are
typically called by other ker-
nel modules (in kernel space)
that support certain types of
USB devices, such as pointing
devices (like mice) or USB disk
drives. In most cases, to be able
to use a USB device, you need a
kernel driver that supports its
corresponding device class.

Test and measurement instru-
ments are no exception. A
number of leading instrument
vendors, among them Agilent,
worked with the USB Imple-
menters Forum (USB-IF)

to create a vendor-independent
standard for USB-based instru-
ments. The resulting USB Test and
Measurement Class (USBTMC)
specification was published in
2002. Most USB instruments
available today adhere to
the USBTMC specification—
especially those from Agilent.

This application note describes
how to create a USBTMC kernel
module to control USB instru-
ments. Example source code for
the driver described below is
available from Agilent’s Web site
at http://www.agilent.com/fi nd/linux
for compilation on your distri-
bution and kernel versions. It
was written and tested under
openSUSE 10.2, but it should
run nearly unchanged on most
current distributions.

Basic USB Terminology
USB has its own way of sharing
bandwidth and logically struc-
turing communication on the
bus. The most important notion
here is that of an endpoint. A
single physical device typically
uses several logical endpoints
and each either sends (“in” end-
point) or receives data (“out”
endpoint). In addition to their
direction, endpoints differ
in type.

“Control” endpoints are used
for device configuration and
initial setup. “Bulk” endpoints
are used to transfer larger
amounts of data to/from a
device. For example, USBTMC
devices use “bulk out” end-
points to receive SCPI commands
and “bulk in” endpoints to
transfer measurement results.
“Interrupt” endpoints are used

2

Figure 1. USBTMC driver structure compared to Ethernet

to accommodate time-sensitive
transfers of small amounts of
data (for example, the movement
of a USB mouse). Similarly,
“isochronous” endpoints are
used to continuously reserve
bandwidth for larger amounts
of data (for example, streaming
audio/video applications).

An interface is a set of endpoints
grouped together to offer a
certain subfunctionality of the
device. For example, USBTMC
devices use a control endpoint
for setup and bulk in/out
endpoints for “regular” com-
munication. These endpoints
are all you need to control a
USBTMC device, and they are
part of a single (logical) USB
interface. Some USB devices
use several interfaces, such as
a USB sound card with separate
interfaces for its audio output
and input capability.

Although not typically used
with USBTMC, an interface
can have a number of alternate
settings (configurations), for
example for different physical
USB interface speeds or differ-
ent application types for the
same device.

Another important notion
about USB is that of a universal
request block (URB). An URB
is a data structure used by a
device class driver to instruct
the USB core driver to transfer
data to/from a USB device.
The URB contains the data to
be transferred, as well as all
the addressing information
required to properly process
the request.

Communicating with
a USBTMC Instrument
Communication with a USBTMC
device consists mostly of sending
SCPI commands and reading
the instrument’s responses
to query commands. To show
you how this works, we’ll use
an example. We’ll send a SCPI
command and explore the
details of the communication.

For sending instrument com-
mands, the USBTMC standard
defines the DEV_DEP_MSG_OUT
message. This message is sent
to the instrument’s bulk out
endpoint and contains a
number of fields in addition
to the SCPI command itself
(see Table 1).

3

Offset Field Size Value Description
(bytes) (bytes)

0 MsgID 1 1 DEV_DEP_MSG_OUT
 message (used to send a
 command string to the
 instrument).

1 bTag 1 x Transfer identifi er. This ID
 is incremented with every
 transfer and allows the
 instrument to detect lost
 messages.

2 bTagInverse 1 ~x One’s complement of bTag
 (transfer identifi er).

3 Reserved 1 0x00 Reserved

4…7 TransferSize 4 5 Number of bytes to be
 transferred (instrument
 command).

8 bmTransferAttributes 1 0x01 End of message. If bit 0
 is set to 1, the instrument
 message ends with this
 transfer. Otherwise, the
 message continues with
 the next transfer. All other
 bits are reserved (set to 0).

9…11 Reserved 3 0x000000 Reserved. Set to 0x000000

12…16 Instrument Command 5 “*RST\n” Instrument command

Table 1. Structure of the USBTMC DEV_DEP_MSG_OUT message (example for *RST command)

VISA IO library for Linux
If you are familiar with the
IO libraries suite available
from Agilent for MS Windows
environments, you might also
be interested in VISA pro-
gramming for Linux. VISA
is a multi-vendor standard
for instrument control. The
VISA/SICL library for Red Hat
Linux, available from TAMS
(www.tamsinc.com) supports most
common interface types (GPIB,
USB, LXI, VXI, GPIO and
RS-232). It provides compatible
command sets if you want to
use VISA in both Windows and
Linux environments. This way
you have a choice to use either
the built-in capabilities of the
Linux operating system (as
explained in this application
note) or to load a VISA library
that may provide a more familiar
command set. For more infor-
mation go to www.tamsinc.com.
The product number is 82091.

Since the VISA implementations
available today are not open
source, they are not transport-
able to other Linux distributions.
This application note is focused
on those situations where a
VISA implementation is not
the preferred option.

To send a SCPI command to an
instrument, a USBTMC driver
wraps the command into the
message structure as shown
and instructs the USB core driver
to process the message (i.e. send
it to the device’s bulk out end-
point). Figure 2 shows an example
of the corresponding code.

A couple of things are notewor-
thy about the code shown. The
function copy_from_user()
is a kernel function that copies

data from user space to kernel
memory. Unlike memcpy(),
it takes care of paging issues
(pages missing in memory).

The next few lines of code are
designed to add alignment
bytes if necessary. According
to the USBTMC specification,
the total number of bytes in
the message must be a multiple
of four.

4

// Setup IO buffer for DEV_DEP_MSG_OUT message

usbtmc_buffer[0]=1; // DEV_DEP_MSG_OUT

usbtmc_buffer[1]=bTag; // Transfer ID (bTag)

usbtmc_buffer[2]=~(bTag); // Inverse of bTag

usbtmc_buffer[3]=0; // Reserved

usbtmc_buffer[4]=command_length&255; // Transfer size (first byte)

usbtmc_buffer[5]=(command_length>>8)&255; // Transfer size (second byte)

usbtmc_buffer[6]=(command_length>>16)&255; // Transfer size (third byte)

usbtmc_buffer[7]=(command_length>>24)&255; // Transfer size (fourth byte)

usbtmc_buffer[8]=1; // Message ends with this transfer

usbtmc_buffer[9]=0; // Reserved

usbtmc_buffer[10]=0; // Reserved

usbtmc_buffer[11]=0; // Reserved

// Append write buffer (instrument command) to USBTMC message

if(copy_from_user(&(usbtmc_buffer[12]),command_buffer,command_length)) {

 // There must have been an addressing problem

 return -EFAULT;

}

// Add zero bytes to achieve 4-byte alignment

n_bytes=12+command_length;

if(command_length%4) {

 n_bytes+=4-command_length%4;

 for(n=12+command_length;n<n_bytes;n++) usbtmc_buffer[n]=0;

}

// Create pipe for bulk out transfer

pipe=usb_sndbulkpipe(usb_dev,bulk_out);

// Send bulk URB

retval=usb_bulk_msg(usb_dev,pipe,usbtmc_buffer,n_bytes,

 &actual,USBTMC_USB_TIMEOUT);

Figure 2. Example code: Sending a SCPI command via a DEV_DEP_MSG_OUT message

The function usb_sndbulk
pipe() assembles information
about the endpoint we are
going to use. Finally, usb_
bulk_msg() asks the kernel
to process the message. The
latter two functions are part
of the services offered by the
USB core layer.

Reading data from an instru-
ment works similarly. First, a
DEV_DEP_MSG_IN message is
sent to the bulk out endpoint,
asking the instrument to send
data in a subsequent read
transaction. Then, the data
is read from the instrument’s
bulk in endpoint. For details,
see the USBTMC specification
and inspect the example code
that accompanies this applica-
tion note.

Registration with
the USB Core
The USB core shown in Figure 1
does much more than just process
USB messages on behalf of a
higher-level driver. It is a facili-
tator between the USB devices
attached and the various higher-
layer services installed. It also
helps manage hot-plugging of
USB devices.

To be able to interact with the
USB core—especially for noti-
fication that devices are being
attached and identifying what
they are—higher-level drivers
need to register with the
USB core.

A key element of this registra-
tion process is telling the USB
core which devices a higher-
level driver would like to service
when they become available.
Wanted devices can be filtered
by various attributes, including
the devices’ vendor ID, product
ID or device class. In the context
of USBTMC, it is most appro-
priate to filter by device class
(application-specific) and
USBTMC subclass. The USBTMC
driver would then get notified
whenever a USBTMC-compatible
device is being attached,
independent of its vendor
or product code.

Figure 3 shows how the exam-
ple driver that accompanies
this application note registers
with the USB core.

5

// This list defines which devices are serviced by this driver. This driver

// handles USBTMC devices, so we look for the corresponding class (application

// specific) and subclass (USBTMC).

static struct usb_device_id usbtmc_devices[] = {

 {.match_flags=USB_DEVICE_ID_MATCH_INT_CLASS |

 USB_DEVICE_ID_MATCH_INT_SUBCLASS,

 // Device class and sub class need to match to be notified by the system

 .bInterfaceClass=254, // 254 = application specific

 .bInterfaceSubClass=3}, // 3 = test and measurement class (USBTMC)

 { } // Terminating entry

};

// This structure contains registration information for the driver. The

// information is passed to the system through usb_register(), called in the

// driver's init function.

static struct usb_driver usbtmc_driver;

// This structure is used to pass information about this USB driver to the

// USB core (via usb_register)

static struct usb_driver usbtmc_driver = {

 .name="USBTMC", // Driver name

 .id_table=usbtmc_devices, // Devices serviced by the driver

 .probe=usbtmc_probe, // Probe function (called when device is connected)

 .disconnect=usbtmc_disconnect // Disconnect function

};

// Register USB driver with USB core

if((retcode=usb_register(&usbtmc_driver))) {

 printk(KERN_ALERT "USBTMC: Unable to register driver\n");

 goto exit_usb_register;

}

Figure 3: Example code: Registering a USB higher-level driver with the USB core layer

Again, a couple of things are
noteworthy about the code. The
first section assembles a list of
structures that will tell the USB
core in which types of devices
we are interested. In this case,
the list has a single entry for
USBTMC devices.

Next, the structure of type
usb_driver is filled. It holds
information the USB core layer
needs to know in order to reg-
ister a higher-layer driver. In
addition to a pointer to the filter
conditions mentioned above, it
contains the addresses of a
probe() and disconnect()
function.

probe() is called by the USB
core to notify the higher-layer
driver of a newly attached
device. It allows the driver to
allocate memory, initialize its
internal data structures and, in
general, get ready for servicing
the new device.

disconnect() is called to tell
the driver that the device is not
available anymore. The driver
will typically clean up its internal
data structures and free any
memory or other resources it
allocated during the execution
of the probe() function.

Access to the Driver
from User Space
USBTMC-compatible instru-
ments are controlled through
text commands, typically—but
not necessarily—following the
SCPI standard. Likewise, mea-
surement results or other data
is usually returned as human-
readable text. In other words,
communicating with a USB
instrument is stream-oriented,
very much like reading from
and writing to a text file. For
such text-based devices, using
a character device driver as a
window into user space is a
frequent (if not obvious) choice.

The beauty of a character device
driver is that it behaves like a
regular text file. Consequently,
you can use standard file I/O
system calls to send data to
and from a device. Likewise,
the output of a console applica-
tion can be redirected to the
device. Character device driv-
ers offer tremendous flexibility.

Character device drivers need
to implement a number of entry
points that the system calls in
order to interact with a device

behind the driver. The most
basic ones are open(), read(),
write() and release(), and
they correspond to the system
calls open(2), read(2),
write(2) and close(2),
respectively.

In the context of USBTMC, the
write() entry point takes the
string to be written and wraps
it into a USBTMC DEV_DEP_
MSG_OUT message. Similarly,
the read() entry point uses a
DEV_DEP_MSG_IN message to
read data from a device, extract
the instrument message part
from the return data and copy
it to the supplied user buffer.

A key concept about device
drivers is that of major and
minor numbers. Device files
are created using the mknod(1)
command, and the major
number specified refers to a
character driver behind the
(arbitrary) device file name.
The minor number is typically
used to specify which device
the driver will control if several
devices are being serviced by
the same driver.

6

7

When a character device driver
is loaded into the kernel, it first
needs to register its major and
minor numbers with the kernel
and publish its entry points.
Figure 4 shows the correspond-
ing lines from the example
driver available with this
application note.

The first section of the code
shown dynamically allocates a
free major number and a range
of minor numbers to use with
the driver.

The structure of type file_
operations is initialized to
hold the addresses of the various
entry points the driver is going

to publish for file I/O. The code
then allocates and fills the cdev
structure that describes the
new character driver and finally
uses the cdev_add() function
to activate the new driver. From
this point on, the driver should
be ready for calls to its previ-
ously published entry points.

// Dynamically allocate char driver major/minor numbers

if((retcode=alloc_chrdev_region(&dev, // First major/minor number to use

 0, // First minor number

 USBTMC_MINOR_NUMBERS, // Number of minor numbers to reserve

 "USBTMCCHR" // Char device driver name

))) {

 printk(KERN_ALERT "USBTMC: Unable to allocate major/minor numbers\n");

 goto exit_alloc_chrdev_region;

}

// This structure is used to publish the char device driver functions

static struct file_operations fops = {

 .owner=THIS_MODULE,

 .read=usbtmc_read,

 .write=usbtmc_write,

 .open=usbtmc_open,

 .release=usbtmc_release,

 .ioctl=usbtmc_ioctl,

 .llseek=usbtmc_llseek,

};

// Initialize cdev structure for this character device

cdev_init(&cdev,&fops);

cdev.owner=THIS_MODULE;

cdev.ops=&fops;

// Combine major and minor numbers

printk(KERN_NOTICE "USBTMC: MKDEV\n");

devno=MKDEV(MAJOR(dev),n);

// Add character device to kernel list

printk(KERN_NOTICE "USBTMC: CDEV_ADD\n");

if((retcode=cdev_add(&cdev,devno,1))) {

 printk(KERN_ALERT "USBTMC: Unable to add character device\n");

 goto exit_cdev_add;

}

Figure 4: Example code: Registering a character device driver

Compiling and Installing
the USBTMC Driver
The example driver that
comes with this application
note is available at
http://www.agilent.com/fi nd/linux
in the form of a TAR archive.
Copy the archive to a suitable
(empty) directory and extract
it using the command tar -x
an1465-30.tar.

The extracted files include
the source files, as well as a
makefile. Compile the driver
using the make(1) command.
This will create a fresh usbtmc.ko
file (kernel object file). Note
that, to compile the driver, you
will need a kernel sources tree
installed on your system. It
is typically available on your
distribution’s media but often
not installed by default (look
for a package named “kernel-
source”).

You can now install the driver
module in the running kernel
using the command insmod
./usbtmc.ko. Similarly, the
module can be unloaded from the
kernel using rmmod usbtmc.
You need root privileges to run
these commands.

To use the driver, first create
the proper device files. To do
that, you need to know which
major number the driver uses.
(It is allocated dynamically in
the initialization routine when
you install the driver, i.e. when
running insmod.) The easiest
way to get that information is
by reading /proc/

devices using the command:
cat /proc/devices|grep
USBTMCCHR.

With the major number
returned by the above com-
mand, you can now create the
device files using mknod/dev/
usbtmc0 c 253 0 (and

similar)—where 253 would be
the major number allocated
by the driver. Finally, use
chmod(1) to set the read/
write bits appropriately.

The driver comes with a shell
script named usbtmc_load
that automates the above steps.
It is shown in Figure 5.

#!/bin/sh

module="usbtmc"

Remove module from kernel (just in case it is still running)

/sbin/rmmod $module

Install module

/sbin/insmod ./$module.ko

Find major number used

major=$(cat /proc/devices | grep USBTMCCHR | awk '{print $1}')

echo Using major number $major

Remove old device files

rm -f /dev/${module}[0-9]

Ceate new device files

mknod /dev/${module}0 c $major 0

mknod /dev/${module}1 c $major 1

mknod /dev/${module}2 c $major 2

mknod /dev/${module}3 c $major 3

mknod /dev/${module}4 c $major 4

mknod /dev/${module}5 c $major 5

mknod /dev/${module}6 c $major 6

mknod /dev/${module}7 c $major 7

mknod /dev/${module}8 c $major 8

mknod /dev/${module}9 c $major 9

Change access mode (RW access for everybody)

chmod 666 /dev/${module}0

chmod 666 /dev/${module}1

chmod 666 /dev/${module}2

chmod 666 /dev/${module}3

chmod 666 /dev/${module}4

chmod 666 /dev/${module}5

chmod 666 /dev/${module}6

chmod 666 /dev/${module}7

chmod 666 /dev/${module}8

chmod 666 /dev/${module}9

Figure 5: Module load script

8

Using the USBTMC Driver
The example USBTMC driver
dynamically issues the next
free (unused) minor number to
each USBTMC device attached—
in the order the USB core noti-
fies the driver of the existence
of the new USB devices. To
communicate with an instrument,
you need to know which minor
number that device is using. In
the example USBTMC driver,
that information is available by

reading from minor number 0.
In other words, minor number 0
is reserved for communication
with the USBTMC driver itself.

After attaching your USB devic-
es (or after booting the system
with the instruments already
attached), you can read a list
of the devices using cat/dev/
usbtmc0. This will return the
product number, manufacturer
ID, serial number and minor
number of each device.

You can send SCPI commands
to a device by redirecting the
command string to its device
file. For example, you can reset
the first USBTMC device using
echo *RST>/dev/usbtmc1.

Likewise, you can read from
a USBTMC device using cat.
For example, echo *IDN?>/
dev/usbtmc1, followed by
cat/dev/usbtmc1 would
print the device’s ID string
(see Figure 6).

skopp@A0071584:~/Projects/usbtmc/src> make

make -C /lib/modules/2.6.18.2-34-default/build SUBDIRS=/home/skopp/Projects/usbtmc/

src modules

make[1]: Entering directory `/usr/src/linux-2.6.18.2-34-obj/i386/default'

make -C ../../../linux-2.6.18.2-34 O=../linux-2.6.18.2-34-obj/i386/default modules

 CC [M] /home/skopp/Projects/usbtmc/src/usbtmc.o

 Building modules, stage 2.

 MODPOST

 LD [M] /home/skopp/Projects/usbtmc/src/usbtmc.ko

make[1]: Leaving directory `/usr/src/linux-2.6.18.2-34-obj/i386/default'

skopp@A0071584:~/Projects/usbtmc/src> su

Password:

A0071584:/home/skopp/Projects/usbtmc/src # ./usbtmc_load

ERROR: Module usbtmc does not exist in /proc/modules

Using major number 253

A0071584:/home/skopp/Projects/usbtmc/src # cat /dev/usbtmc0

Minor Number Manufacturer Product Serial Number

001 Agilent Technologies 34980A Switch Measure Unit MY44003719

A0071584:/home/skopp/Projects/usbtmc/src # echo *RST>/dev/usbtmc1

A0071584:/home/skopp/Projects/usbtmc/src # echo *IDN?>/dev/usbtmc1

A0071584:/home/skopp/Projects/usbtmc/src # cat /dev/usbtmc1

Agilent Technologies,34980A,MY44003719,2.19-2.19-2.07-1.05

Figure 6: Interactive instrument control using echo and cat

9

In your (automated) test
application, simply use file IO
system calls to send the appro-
priate SCPI command strings
to your devices (or read back
their responses). Figure 7
shows a basic example.

Summary
The majority of USB measure-
ment devices available today
adhere to the USBTMC
specification. To use these
devices, you need a USBTMC
device driver. The techniques
described in this application
note demonstrate how to create
a generic driver for use with
all current Linux distributions
and versions. The driver is
implemented as a character
device driver and, as a result,
instrument access is possible
through output redirection and
simple system calls for file I/O.

1 Linux Device Drivers, Jonathan
 Corbet/Alessandro Rubini/
 Greg Kroah-Hartman, O’REILLY

2 USB Test and Measurement
 Class Specifications, USB
 Implementers Forum,
 http://www.usb.org/developers/
 devclass_docs#approved

#include <stdio.h>

#include <fcntl.h>

main()

{

 int myfile;

 char buffer[4000];

 int actual;

 myfile=open("/dev/usbtmc1",O_RDWR);

 if(myfile>0)

 {

 write(myfile,"*IDN?\n",6);

 actual=read(myfile,buffer,4000);

 buffer[actual]=0;

 printf("Response:\n%s\n",buffer);

 close(myfile);

 }

}

Figure 7: Programmatic instrument control using file IO system calls

10

11

Related Agilent literature
The 1465 series of application
notes provides a wealth of
information about the creation
of test systems, the successful
use of LAN, WLAN and USB in
those systems, and the optimi-
zation and enhancement of
RF/microwave test systems:

• Test-System Development Guide:
 A Comprehensive Handbook
 for Test Engineers
 (pub no. 5989-5367EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-5367EN.pdf

Test System Development

• Test System Development Guide:
 Application Notes 1465-1
 through 1465-8 (pub no. 5989-2178EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-2178EN.pdf

• Using LAN in Test Systems:
 The Basics
 AN 1465-9 (pub no. 5989-1412EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems:
 Network Configuration
 AN 1465-10 (pub no. 5989-1413EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems:
 PC Configuration
 AN 1465-11 (pub no. 5989-1415EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and
 Measurement Environment
 AN 1465-12 (pub no. 5989-1417EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1417EN.pdf

• Using SCPI and Direct I/O vs. Drivers
 AN 1465-13 (pub no. 5989-1414EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1414EN.pdf

• Using LAN in Test Systems:
 Applications
 AN 1465-14 (pub no. 5989-1416EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1416EN.pdf

• Using LAN in Test Systems:
 Setting Up System I/O
 AN 1465-15 (pub no. 5989-2409)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-2409EN.pdf

• Next-Generation Test Systems:
 Advancing the Vision with LXI
 AN 1465-16 (pub no. 5989-2802)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-2802EN.pdf

RF and Microwave Test Systems

• Optimizing the Elements of an
 RF/Microwave Test System
 AN 1465-17 (pub no. 5989-3321)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-3321EN.pdf

• 6 Hints for Enhancing
 Measurement Integrity in
 RF/Microwave Test Systems
 AN 1465-18 (pub no. 5989-3322)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-3322EN.pdf

• Calibrating Signal Paths in
 RF/Microwave Test Systems
 AN 1465-19 (pub no. 5989-3323)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-3323EN.pdf

LAN eXtensions for
Instrumentation(LXI)

• LXI: Going Beyond GPIB, PXI and VXI
 AN 1465-20 (pub no. 5989-4371)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4371EN.pdf

• 10 Good Reasons to Switch to LXI
 AN 1465-21 (pub no. 5989-4372)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4372EN.pdf

• Transitioning from GPIB to LXI
 AN 1465-22 (pub no. 5989-4373)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4373EN.pdf

• Creating Hybrid Systems
 with PXI, VXI and LXI
 AN 1465-23 (pub no. 5989-4374)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4374EN.pdf

• Using Synthetic Instruments
 in Your Test System
 AN 1465-24 (pub no. 5989-4375)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4375EN.pdf

• Migrating System Software
 from GPIB to LAN/LXI
 AN 1465-25 (pub no. 5989-4376)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4376EN.pdf

• Modifying a GPIB System to
 Include LAN/LXI
 AN 1465-26 (pub no. 5989-6824)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6824EN.pdf

Using Linux in Your Test Systems

Example code is available for download at
http://www.agilent.com/fi nd/linux

• Using Linux in Your Test
 Systems: Linux Basics
 AN 1465-27 (pub no. 5989-6715)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6715EN.pdf

• Using Linux to Control LXI
 Instruments Through VXI-11
 AN 1465-28 (pub no. 5989-6716)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6716EN.pdf

• Using Linux to Control LXI
 Instruments Through TCP
 AN 1465-29 (pub no. 5989-6717)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6717EN.pdf

www.agilent.com/find/open

www.agilent.com
For more information on Agilent Technologies’
products, applications or services, please
contact your local Agilent office. The complete
list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 € fixed network rates
Germany 01805 24 6333**
 **0.14 €/minute
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21) 8113811(Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: October 24, 2007

Product specifications and descriptions
in this document subject to change
without notice.
Windows and MS Windows are
U.S. registered trademarks of
Microsoft Corporation.

© Agilent Technologies, Inc. 2007
Printed in USA, November 7, 2007
5989-6718EN

www.agilent.com/find/emailupdates
Get the latest information on the
products and applications you select.

www.agilent.com/find/agilentdirect
Quickly choose and use your test
equipment solutions with confidence.

www.agilent.com/find/open
Agilent Open simplifies the process
of connecting and programming
test systems to help engineers
design, validate and manufacture
electronic products. Agilent offers
open connectivity for a broad range
of system-ready instruments, open
industry software, PC-standard I/O
and global support, which are
combined to more easily integrate
test system development.

www.lxistandard.org
LXI is the LAN-based successor to
GPIB, providing faster, more efficient
connectivity. Agilent is a founding
member of the LXI consortium.

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when prom-
ised. You will get full value out of
your Agilent equipment through-
out its lifetime. Your equipment
will be serviced by Agilent-trained
technicians using the latest factory
calibration procedures, automated
repair diagnostics and genuine parts.
You will always have the utmost
confidence in your measurements.

Agilent offers a wide range of ad-
ditional expert test and measure-
ment services for your equipment,
including initial start-up assistance
onsite education and training, as
well as design, system integration,
and project management.

For more information on repair and
calibration services, go to:

www.agilent.com/find/removealldoubt

