Flexibility has always been a
cornerstone of the Linux oper-
ating system. The Linux kernel
can be tuned and modified more
than most other operating
systems to make it fit your ap-
plication’s requirements. With
some fairly simple techniques,
you can optimize your system’s
suitability for soft real-time
applications, which often is
desirable for simulation or
measurement sequencing with

Tips for Optimizing
Test System Performance in
Linux Soft Real-Time Applications

Application Note 1465-31

exact timing. Tips for Optimizing
Test System Performance in
Linux Soft Real-Time Applica-
tions is part of a series of
application notes designed to
explain key aspects of using
Linux in test and measurement
applications.

Table of Contents

Introduction 2
* Real-time systems
+ Soft real-time versus hard

real-time systems

Basic tips for optimizing response times 3
Time slice values

Scheduling policies and priorities
Using preemptible kernel

Virtual memory and paging

© 00 N o1 o

Summary

Related Agilent Literature 10

' Agilent Technologies

Introduction

Effective functional testing often
requires you to simulate the
natural operating environment
of your device under test (DUT),
including realistic stimulus sig-
nals. Simulating the operating
environment can be a challenge,
especially if your DUT is a control
module designed for a real-time
application. To properly test the
DUT, your test system needs to
have real-time capabilities as
well, so it can apply the right
stimulus, based on the DUT’s
outputs, in a timely manner.

Real-time systems

What do we mean by “real-time”?
A real-time system has the ability
to react to an external event
(such as a trigger signal) within
a known amount of time. Unlike
regular operating systems, real-
time systems guarantee a certain
reaction time, no matter what
state the system is in when the
external event occurs. A real-
time system doesn’t necessarily
react quickly — but it is definitely
reliable.

Let’s look at some examples
where you would need at least a
degree of real-time capability in
your test system. Let’s suppose
you need to apply a sequence
of stimulus signals with exact
timing. Whenever you control
the timing in your test software
using operating system calls
such as sleep(), you rely on the
operating system to awaken
your process at the right time.
A real-time system typically
gives you more precise control
over sleep times.

Simulating sensors in a dynamic
environment is another example
where you need real-time capa-
bility. The stimulus signal often
needs to be generated on the fly,
as a function of DUT state and
other variable parameters. For
smooth update of the stimulus
signals, your software algorithm
needs to be run at a certain
minimum rate. A real-time
system is able to guarantee
that minimum rate.

Most operating systems, including
off-the-shelf Linux and Windows®
systems, are not real-time. They
optimize the average processor
time available to the user or to a
process, but sometimes the system
will simply become unavailable
for a moment. This could happen,
for example, when the operating
system is performing a house-
keeping task.

Soft real-time versus hard

real-time systems

Depending on the nature of your
application, you may not be able
to live without hard real-time
capabilities. For example, if

you are controlling a chemical
process using software-based
closed-loop control, you will
likely need a guaranteed up-
date rate at all times. Another
example would be controlling
machinery or other moving
parts. In these examples, real-
time performance is critical

and required under all circum-
stances.

Some applications, however,
work well with what is known
as soft real-time capability. In
soft real-time, the system is
optimized for reliable timing,
but on a best-effort basis with
degradation in performance on
rare occasions. Test and mea-
surement applications are often
good candidates for soft real-
time operation because of their
non-critical nature (at least,
compared to the process control
example described above) and
the possibility of repeating

the test.

This application note offers
several tips for optimizing the
soft real-time performance of
regular (off-the-shelf) Linux
systems. Why would you choose
this option instead of a hard
real-time approach? Hard real-
time systems (including Linux
variants) are often proprietary
and come with a substantial
increase in system complexity.
Consequently, as long as soft
real-time is sufficient, you may
want to avoid the cost and risk
of using a specialized hard real-
time variant.

Basic Tips for Optimizing
Response Times

First, let’s cover some tactics
that might appear to be trivial
but are important to keep in
mind, nonetheless.

Awotid the challenge if you can.
One potential solution to the
real-time challenge is to just
not play the game. For example,
in manufacturing test, some
people change the rules by load-
ing special test software into
their DUTs. This approach can
substantially simplify testing.
For example, the various pins,
channels or subfunctions of the
DUT oftentimes can be tested
sequentially, without the need
for simultaneous stimulus and
real-time synchronization be-
tween the various system

resources. The DUT test software
communicates with the test ap-

plication and supports testing by
controlling individual resources
or reporting status information.

Put the burden of real-time
control on your instruments.
Sometimes, you can avoid the
challenge on the software side by
putting the burden of real-time
control on a suitable instrument
(or set of instruments). For
example, the Agilent 34980A
multifunction switch measure
unit can be programmed to per-
form a sequence of actions with
exact timing and raise an alarm
if a given measurement channel
exceeds preset limits. Another
example: the Agilent E5818A
LXI class-B trigger unit uses
IEEE-1588 (precision time
protocol or PTP) over Ethernet
for precise time-stamping of
events and time-based triggering
of conventional (non-PTP)
instruments.

Using the real-time capabilities
built into your instruments is a
clever work-around. Obviously,
it is only feasible if your instru-
ments can be configured to
handle the real-time requirements
of your application. If your re-
quirements call for intelligent and
flexible stimulus and response,
an implementation in software
could be the only choice.

Use a fast PC with plenty of
memory. A fast PC with ample
processing power is a great
starting point for soft real-time
applications. Among the things
that hurt you most in these ap-
plications is the housekeeping
regularly done by the operating
system, as well as the overhead
involved in the start-up of addi-
tional programs or services. You
probably cannot avoid house-
keeping activities altogether,
but a fast PC will complete such
tasks more quickly and, as a result,
there will be less of an interrup-
tion to your measurement task.

Shut down unused services.
Make sure your PC spends its
processing power on the tasks
that are really important. A de-
fault Linux installation typically
will have a number of services
enabled you don’t need. These
services often come with a
daemon that implements the
service, and that daemon pro-
cess might become active to do
its work or just to perform some
housekeeping. With regards to
real-time, such processes are

a source of uncertainty and
increased response times. It is
good practice to disable unused
(network) services anyway

because they could be a security
hole. The chkconfig(8) command
allows you to list and enable/
disable the services on your
system. Some examples of ser-
vices you might want to disable:

* The cron service allows you
to schedule programs for later
execution. It is usually used
for routine tasks such as back-
up, removal of old temporary
files, etc., that impact response
times when running.

Other services that might not
be required include network
file system (nfs, nfsserver),
ntp (network time protocol),
cups (printing server), as

well as any firewall services
(especially if you are using an
isolated network with a stand-
alone firewall).

* Many basic network services
(including telnet and ftp) do
not register as an individual
service but are started by
inetd, the Internet daemon.
These services are enabled
or disabled by editing the file
/etc/inetd.conf (when using the
original inetd) or the files in
the /etc/xinetd.x directory
(when using the newer xinetd,
the extended Internet daemon).

* As an alternative to using

chkconfig(8) or editing the
configuration files directly,
most Linux distributions
feature interactive system
administration tools such as
YaST, available with openSUSE
(see Figure 1).

Figure 1. Most distributions come with administration aids such as YaST (openSUSE)

Isolate the real-time part of your
application. Oftentimes, only a
small part of the application or
DUT requires real-time capabili-
ties. For example, an ECU that
requires some of its sensor inputs
to be updated in real-time usu-
ally has a load of other inputs and
outputs that are static.

It is often useful to separate the
real-time and non-real-time parts
of the application in separate
processes. Doing so allows you to
optimize each part for its special
requirements and make different
design decisions. For example,
you could implement the real-time
part using C and the rest using a
higher-level language. You

could also use different schedul-
ing policies (see Scheduling Poli-
cies and Priorities, page b).

™ YaST2@A0071584 = (= 3
Here, specify which system senvices “‘ System Servi; (Runlevel): Services
should be started. T
Waming: The system services (runlevel
editer) is an expert tool. Only change (@) Simple Made () Expert Mode
settings if you know what you are deing.
Scharedsi jmur fymam dight ot | Service | Enabled | Description -
function properly afterwards. {
atieventsd Yes* ATI Events Daemeon |
Activate starts the selected service and auditd Yes auditd daemon providing cere auditing services ‘
services that it depends on and enables autofs No Start the autefs daemen for automatic mounting of filesystems. 1
them to start at system boot time. autoyast No* A start script to execute autoyast scripts
Likewise, Deactivate stops services that cran Yes Cron job service
depend on a given service and the cups Yes Start CUPS printer daemen i |
service itself and disables their start at cupsrenice Yes renice cupsd after the kde is running
RSt boat Hime.. us Yes D-Bus is a message bus system for applications to talk to one another. [
. - i
An asterisk (%) after a service status eatlygdm o QuickX Cléplay Manager |
ol earlykbd Yes Keyboard settings (don't disablel)
means tht the service is enabled but [
Rt runaing of 1= dlcab) sd Bk anning earlysyslog Yes Start the system logging daemans
ey esound Ho* Sound daemon with network support
evms Ho start Enterprise Volume Management System
To change the behavior of runlevels and fam Ho file access monitoring
system services in detail, click Expert fhset Yes Framebuffer setup
Mode. festival No fastival daemon providing full text-to-speech system [
apm Ho Start gpm to allow mousa on console |
gssd Ho Start the RPC G55 security daemon |
haldagmon Yes HAL iz a daemon for managing information about the hardware an the system -
11] GDB
Cron job serice
| Enable || pisable |
| Abgrt Finish

Time Slice Values

Multitasking presents a tradeoff
between responsiveness and
overhead. The system’s time
slice value indicates how long a
process is allowed to run before
it needs to relinquish the CPU
to the next process. If the time
slices are short, the average
waiting time is smaller and the
system will be more responsive.
At the same time, every task
switch means overhead, and the
efficiency of the system overall
will decrease somewhat.

Larger time slices are good for
number-crunching or server ap-
plications. Smaller time slices
are better for desktop applica-
tions and interactive use. For

real-time applications, you might

want to choose even smaller
time slices.

Figure 2 shows an excerpt of

the file kernel/sched.c under the
kernel sources tree. This is where
the time slice values are defined.
As you can see, in this example
the default time slice is set to

100 ms. For real-time applica-
tions, you might want to try
setting both the minimum and
default values to 1 ms.

Again, most distributions offer
interactive system configuration
tools that allow you to tune vari-
ous system parameters without
modifying the kernel source

files directly. Figure 3 shows the
corresponding window in YaST
(openSUSE). The time slice values
are defined under System/Kernel
in the system configuration tool.

Figure 2. Time slice values, as defined in sched.c

/*

* These are the 'tuning knobs' of the scheduler:

*

* Minimum timeslice is 5 msecs

* default timeslice is 100 msecs,

(or 1 jiffy, whichever is larger),
maximum timeslice is 800 msecs.

* Timeslices get refilled after they expire.

*/
#define MIN_TIMESLICE
#define DEF_TIMESLICE
#define ON_RUNQUEUE WEIGHT
#define CHILD_ PENALTY
#define PARENT_PENALTY
#define EXIT_WEIGHT
#define PRIO_BONUS_RATIO
#define MAX_ BONUS
#define INTERACTIVE_ DELTA
#define MAX_ SLEEP_AVG
#define STARVATION_ LIMIT

#define NS_MAX SLEEP_AVG

max (5 * HZ / 1000, 1)
(100 * HZ / 1000)

30

95

100

3

25
(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)

2

(DEF_TIMESLICE * MAX BONUS)
(MAX_SLEEP AVG)

(JIFFIES_TO_NS (MAX_SLEEP_AVG))

Reducing the time slice values
could help your system be more
responsive overall. Note, how-
ever, that there is only an impact
on your real-time application if it
is running as a “normal” process
(with static priority zero). See
the following section for details.

Scheduling Policies and
Priorities

The Linux scheduler allocates
processor time to the various
processes based on their
scheduling policy and priority.
Most processes use the
SCHED_OTHER policy which
always goes along with a static
priority value of zero (mean-
ing, lowest priority). Within this
group of (regular) processes,
the scheduler uses additional
dynamic priority values for fair-
ness. For example, a process that
is waiting for CPU time gets an
increase in (dynamic) priority
over time.

Figure 3. Configuration of time slices using YaST (openSUSE)

YaST2@A0071584

aApplications al
& Desktop

el -.{J-(jetc/sysconfig Editor

Hardware
& MNetwork
@ Other
=) System
® Auditing

Current Selection: SystemfKernel

Setting of: SCHED_MINTIMESLICE (changed)

® Backup
Boot

10000

J'|| Default |

Bootloader
Console

Cron

Daemons

Envirenment

@ File systems

® Hardware

= Kernel
INITRD_MODULES
DOMU_INITRD_MODULES
MODULES_LOADED_ON_E001
ACPI_DSDT
SCHED_MAXTIMESLICE
SKIP_RUNNING_KERNEL
DMAPI_PROBE
ENABLE_SYSROQ

Logging

® Net-SNMP

Powermanagement

Printing

[*]

[«]»

File: /etc/sysconfigikernel

Possible Values: Any integer value from 1000 to 50000
Default Value: 1000

Service to Restart: boot.loadmodules

Description:

Length of the shortest timaslice a process (with lowest priority / maximum
niceness) will be running on a €PU. Time is given in microseconds (us).
This time should be much shorter than SCHED_MAXTIMESLICE to keep the
nice values meaningful. The values can only be specified up to a accuracy
of /HZ 5, i.e. 10000us on a HZ=100 system. 1000us if HZ=1000.
Mote that the boot script (bootsched) does scale the values if tha
MINTIMESLICE is below the minimum for the timer interrupt frequency (HZ
value) of the booted kernel.
For interactive desktop use, SCHED_MINTIMESLICE/SCHED_MAXTIMESLICE walues
of 1000 and 30000 are recommended. For non-interactive use, multiply both
values by 10 or 20.

_I_m_lmﬁlnmnm e
«]

(e]¥)

| Help !

i Search

i Abort

To a certain degree, you can

set up a process for preferred
treatment by manually giving it
a high (dynamic) priority using
the nice(1) command (for new
programs) or renice(8) (for exist-
ing processes). This will result in
more processor time being avail-
able to the process on average,
but is usually not sufficient for
real-time applications. No matter
what the dynamic priority is, the
process is still preempted when
processes with non-zero static
priority are ready to run.

For time-sensitive processes, Li-
nux offers the SCHED_FIFO and
SCHED_RR policies. Processes
that use these policies just use
static priorities, usually rang-
ing from 1 to 99 (highest prior-
ity). There’s no fairness here: a
lower-priority process is always
preempted by a higher-priority
one. On the positive side, you can
usually get a decent level of soft
real-time performance by using a
high priority value.

SCHED_RR is very similar to
SCHED_FIFO but adds time slic-
ing between all processes sharing
the same priority. Using the FIFO

algorithm, a process goes to the
end of the list only if it relin-
quishes the processor voluntarily
or if it is blocked by an I/0O
request (or, of course, if a higher-
priority process is ready to run).
Using the RR (round robin)
algorithm, the process loses the
processor after it has been run-
ning for a full time quantum. So,
with this policy, there is some
fairness, at least within the same
level of priority.

The code snippet shown in
Figure 4 demonstrates how

a process can change its own
scheduling policy and priority.
Obviously, this requires root
privilege.

The graph in Figure 5 shows
what effect this change can have
on your application. The four
traces show the execution time
of a math function over time.
The yellow and turquoise traces
were taken while the system was
running idle (no CPU-intensive
processes other than the bench-
mark process). The traces show
the execution time using the
SCHED_OTHER and SCHED_FIFO
policies, respectively. As you
can see, the performance is very
similar and reasonably constant.

The picture changes dramatically
if the system is running under
load. In this example, additional
load is generated by simultan-
eously starting the OpenOffice
Writer application and the Firefox
Web browser. The blue trace
shows that the execution time
using the default scheduling
policy fluctuates widely, with
peaks where the time is more
than double the idle level. Using
the FIFO policy, however, the
performance stays constant and
reliable (magenta trace).

Using Preemptible Kernel

As shown in figure 5, Linux uses
preemptive multitasking. This
means that the operating system
can take control away from a
process if its share of time runs
out or if a higher-priority process
is ready to run. Historically, the

Fig

Figure 4. Code example for setting the scheduling policy and priority

<stdio.h>
<sys/mman.h>
<sched.h>
<errno.h>
<sys/resource.h>
<time.h>

#include
#include
#include
#include
#include
#include

int MinPriority;

int MaxPriority;

struct sched param prio;
int en;

// Get min and max priority values for SCHED FIFO policy
MinPriority=sched_get_priority min (SCHED_FIFO) ;

printf ("Min priority for FIFO policy is %d\n",MinPriority) ;
MaxPriority=sched get_ priority max (SCHED_FIFO) ;

printf ("Max priority for FIFO policy is %d\n",MaxPriority) ;

// Set scheduling policy and priority value (maximum)

prio.sched priority = MaxPriority;

if (sched_setscheduler (0,SCHED FIFO, &prio)<0) {

// There was a problem

en=errno;

printf ("Error returned by sched setscheduler: %s\n",strerror(en));
exit (0);

ure 5. Impact of scheduling policy on execution time (example)

Execution Time (us)

120000

100000

80000 H

60000

40000

20000

Time

—— OTHER (under load)— FIFO (under load) OTHER (idle) FIFO (idle) |

Linux kernel has been an excep-
tion to that rule: code running in
kernel space was excluded from
preemption. This is an issue in
real-time systems because regular

processes can avoid preemption
by making an operating system
call (and some calls, such as
fork(2), can take a fair amount
of time to execute).

Figure 6. Entry for kernel preemption in XConfig tool
| gconf = @ £
File Option Help
o
o wE |l E
I Option |« | | optien |-
: 2 =
Code maturity level options [Generic xB6 suppart
(= General setup
OIConfi PRk R i tfo I [ZHPET Timer Suppert
o H" ":’I" an i:: MR matnres o small vy 32) Maximum number of CPUs (2-255)
BT :I £ morle 2uppy [Z5MT iHyperthreading) scheduler support
e “IO ;y::d | [FMulti-core scheduler support hd:
Ll = Preemption Model
e DS . m) No Forced Preemption (Server)
© Power management options (ACPI, APM)) Volurtary kém sl raamptian-{Daskta}
ACPI (Advanced Configuration and Power Interface) @P"ﬂ! "M Lo-La!eMy paskzop? el
APM (Advanced Power Management) BIOS Support S =

CPU Frequency scaling
= Bus options (PCI, PCMCIA, EISA, MCA, ISA)
PCCARD (PCMCIA/CardBus) support
PCl Hotplug Support
Executable file formats
Netwarking
=) Device Drivers
Generic Driver Options
Connector - unified userspace <-> kernelspace link
Memory Technology Devices (MTD)
Parallel port support
Plug and Play support
Block devices
ATAJATAPUMFM/RLL support
SCSI device support
Serial ATA (prod) and Parallel ATA (experimental) dy =
0ld CD-ROM drivers (not SCSI, not IDE)
Multi-device sunnort (RAID_and | VM1 L
(4] | [

=

[Alss hauristics ta hlaidizahla lnral &PIC

Preemptible Kernel (Low-Latency Desktop) (PREEMPT

This option reduces the latency of the kernel by making

all kernel code (thatis not executing in a critical section)
preemptible. This allows reaction to interactive events by
permitting a low priority process to be preempred inveluntarily
even if itis in kernel mode executing a system call and would
otherwise not be about to reach a natural preemption point.
This allows applicatiens to run mere ‘smoothly’ even when the
system is under load, at the cost of slighly lower throughput
and a slight runtime overhead to kernel code.

Select this if you are building a kernel for a desktop or
embedded system with latency requirements in the milliseconds
range.

Luckily, modern Linux kernels
can be configured to support
preemption. Using this option,
all kernel code is considered to
be preemptible unless explicitly
marked as a critical section.
Figure 6 shows the correspond-
ing entry in the XConfig! kernel
configuration tool. Kernel
preemption is found under the
“Processor type and features”
subtree.

1 To use XConfig, cd to /usr/src/linux and run
the command make xconfig. Note that XConfig

is based on the Qt library, so make sure all pack-

ages related to Qt are installed on your system.
XConfig creates a kernel configuration (.config)
file that is subsequently used by “make” when
it is building the kernel. The complete process

of building and installing a new kernel depends
on your distribution and boot manager and

is beyond the scope of this application note.

Please refer to your distribution’s documentation.

Figure 7. Locking a process in RAM

#include <sys/mman.h>

// Lock all current and future memory areas associated with the current process

if (mlockall (MCL_CURRENT|MCL FUTURE)<0) {

// There was a problem
en=errno;

printf ("Error returned by mlockall: %$s\n",strerror(en));

exit (0);

}

// Real-time stuff goes here.

// Unlock memory (optional, done automatically when process ends)

munlockall () ;

Virtual Memory and Paging

Like all modern operating
systems, Linux offers virtual
memory and paging, and can
thereby offer a much larger ad-
dress space than is physically
available in RAM. When the
system runs low on physical
memory, it swaps currently
unneeded pages out to its
swap space on the hard disk.
When the pages are accessed,
an exception occurs and the
pages are swapped back in.

Paging is one of the big issues
with real-time applications
because it introduces additional
latency and uncertainty. The
actual delays due to paging
depend on memory usage and
are usually hard to foresee.

To limit the effects of paging, at
the very least, you should lock
your real-time application’s
process and associated data in
RAM. The code snippet in Figure 7
shows how this can be done.

Although it is brute force, the Summary
most effective method of avoiding
latency issues caused by paging
is to exclude that option from the
kernel altogether. You might want
to choose this option if you have
a good grasp of your application’s
current and future memory
requirements. Embedded applica-
tions, for example, usually have
well-known memory requirements
and don’t require paging. Figure 8
shows the corresponding option
in the XConfig kernel config-
uration tool.

If your application requires soft
real-time operation and you
choose to implement the corre-
sponding algorithms in software,
you can benefit from the flexibility
offered by Linux. Using real-time
scheduling (SCHED_FIFO or
SCHED_RR policy) along with a
high static priority often makes
a dramatic difference. By com-
bining the latter three strategies
(using real-time scheduling and
preemptible kernel and avoiding
paging) you can typically get a
very decent level of soft real-time
performance from off-the-shelf
Linux distributions.

Figure 8. Disabling paging via XConfig

= qeonf

File Dptien Help

e | IlE

| Option | |« | option
Code maturity level options Local version - append to kemnel release; -default
=1 ip OAutomatically append version information to the version string
[Configure standard kernel features (for small systems) (W]Suppart far paging of ananymeus memery (swap)
Loadable module support [System V IPC
= Block layer [FIPOSIX Message Queues
10 Schedulers = [£]1BSD Process Accounting
(=) Processor type and features [BSD Process Accounting version 3 file format
Firmware Drivers (= [ZExport task/process statistics through netlink (EXPERIMENTAL)
(= Power management options (ACPI, APM) [ZEnable per-task delay accounting (EXPERIMENTAL)
ACPI (2 [« and Power rface) Support = [Fauditing support
APM (Advanced Power Management) BIOS Support — [JEnable system-call auditing support
CPU Frequency scaling (= [ZKernel .config support
(= Bus options (PCI, PCMCIA, EISA, MCA, ISA) [ZEnable access to .config through Jprecicenfig.gz
PCCARD (PCMCIAMC ardBus) support A Cpuset suppert
PCI Hotplug Support Karnal->user space relay support (formerly relayfs)
Exacutable file formats Initramfs source file(s):
Networking A Optimize for size (Look out for broken compilarsl)

= Device Drivars
Ganaric Driver Options

Connector - unified userspace <-> kernelspace linker

Memory Technology Devices (MTD) 5 rt for ing of memory (swap) (5wap)
Parallel port support

Plug and Play support This eption allows you to choose whether you want to have support
Block devices for so called swap devices or swap files in your kernel that are
ATAATAPWMFMIRLL support used to provide more virtual memory than the actual RAM present

5C5| device support in your computer. i unsure say Y.

Serial 4TA (prod) and Parallel ATA (experimental) drivers
0ld CD-ROM drivers (nat SCSI. not IDE}

Multi-device support (RAID and LVM)

Fusion MPT device support

IEEE 1394 (FireWire) support

120 device support
P e -

(K1}

Related Agilent literature

The 1465 series of application
notes provides a wealth of
information about the creation
of test systems, the successful
use of LAN, WLAN and USB in
those systems, and the optimi-
zation and enhancement of
RF/microwave test systems:

« Test-System Development Guide:
A Comprehensive Handbook
for Test Engineers
(pub no. 5989-5367EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-5367EN.pdf

Test System Development

« Test System Development Guide:
Application Notes 1465-1
through 1465-8 (pub no. 5989-2178EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-2178EN.pdf

 Using LAN in Test Systems:
The Basics
AN 1465-9 (pub no. 5989-1412EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1412EN.pdf

* Using LAN in Test Systems:
Network Configuration
AN 1465-10 (pub no. 5989-1413EN)
http://cp.literature.agilent.com/
litweh/pdf/5989-1413EN.pdf

» Using LAN in Test Systems:
PC Configuration
AN 1465-11 (pub no. 5989-1415EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1415EN.pdf

* Using USB in the Test and
Measurement Environment
AN 1465-12 (pub no. 5989-1417EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1417EN.pdf

* Using SCPI and Direct I/0 vs. Drivers
AN 1465-13 (pub no. 5989-1414EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1414EN.pdf

* Using LAN in Test Systems:
Applications
AN 1465-14 (pub no. 5989-1416EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1416EN.pdf

* Using LAN in Test Systems:
Setting Up System 1/0
AN 1465-15 (pub no. 5989-2409)
http://cp.literature.agilent.com/
litweb/ pdf/5989-2409EN.pdf

* Next-Generation Test Systems:
Advancing the Vision with LXI
AN 1465-16 (pub no. 5989-2802)
http://cp.literature.agilent.com/
litweb/pdf/5989-2802EN.pdf

RF and Microwave Test Systems

* Optimizing the Elements of an
RF/Microwave Test System
AN 1465-17 (pub no. 5989-3321)
http://cp.literature.agilent.com/
litweb/pdf/5989-3321EN.pdf

* 6 Hints for Enhancing
Measurement Integrity in
RF/Microwave Test Systems
AN 1465-18 (pub no. 5989-3322)
http://cp.literature.agilent.com/
litweb/pdf/5989-3322EN.pdf

* Calibrating Signal Paths in
RF/Microwave Test Systems
AN 1465-19 (pub no. 5989-3323)
http://cp.literature.agilent.com/
litweb/pdf/5989-3323EN.pdf

LAN eXtensions for
Instrumentation(LXI)

* LXI: Going Beyond GPIB, PXI and VXI
AN 1465-20 (pub no. 5989-4371)
http://cp.literature.agilent.com/
litweb/pdf/5989-4371EN.pdf

+ 10 Good Reasons to Switch to LXI
AN 1465-21 (pub no. 5989-4372)
http://cp.literature.agilent.com/
litweb/pdf/5989-4372EN.pdf

* Transitioning from GPIB to LXI
AN 1465-22 (pub no. 5989-4373)
http://cp.literature.agilent.com/
litweb/pdf/5989-4373EN.pdf

* Creating Hybrid Systems
with PXI, VXI and LXI
AN 1465-23 (pub no. 5989-4374)
http://cp.literature.agilent.com/
litweb/pdf/5989-4374EN.pdf

* Using Synthetic Instruments
in Your Test System
AN 1465-24 (pub no. 5989-4375)
http://cp.literature.agilent.com/
litweb/pdf/5989-4375EN. pdf

* Migrating System Software
from GPIB to LAN/LXI
AN 1465-25 (pub no. 5989-4376)
http://cp.literature.agilent.com/
litweb/pdf/5989-4376EN.pdf

* Modifying a GPIB System to
Include LAN/LXI
AN 1465-26 (pub no. 5989-6824)
http://cp.literature.agilent.com/
litweb/pdf/5989-6824EN.pdf

Using Linux in Your Test Systems

Example code is available for download at
http://www.agilent.com/find/linux

* Using Linux in Your Test
Systems: Linux Basics
AN 1465-27 (pub no. 5989-6715)
http://cp.literature.agilent.com/
litweb/pdf/5989-6715EN.pdf

* Using Linux to Control LXI
Instruments Through VXI-11
AN 1465-28 (pub no. 5989-6716)
http://cp.literature.agilent.com/
litweh/pdf/5989-6716EN.pdf

* Using Linux to Control LXI
Instruments Through TCP
AN 1465-29 (pub no. 5989-6717)
http://cp.literature.agilent.com/
litweb/pdf/5989-6717EN.pdf

* Using Linux to Control
USB Instruments
AN 1465-30 (pub no. 5989-6718)
http://cp.literature.agilent.com/
litweb/pdf/5989-6718EN.pdf

www.agilent.com/find/open

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the
products and applications you select.

@ Agilent Direct

www.agilent.com/find/agilentdirect
Quickly choose and use your test
equipment solutions with confidence.

Agilent '

Open 'zsr
www.agilent.com/find/open
Agilent Open simplifies the process
of connecting and programming
test systems to help engineers
design, validate and manufacture
electronic products. Agilent offers
open connectivity for a broad range
of system-ready instruments, open
industry software, PC-standard 1/0
and global support, which are
combined to more easily integrate
test system development.

LXI

www.Ixistandard.org

LXl is the LAN-based successor to
GPIB, providing faster, more efficient
connectivity. Agilent is a founding
member of the LXI consortium.

Remove all doubt

Our repair and calibration services
will get your equipment back to you,
performing like new, when prom-
ised. You will get full value out of
your Agilent equipment through-
out its lifetime. Your equipment
will be serviced by Agilent-trained
technicians using the latest factory
calibration procedures, automated
repair diagnostics and genuine parts.
You will always have the utmost
confidence in your measurements.

Agilent offers a wide range of ad-
ditional expert test and measure-
ment services for your equipment,
including initial start-up assistance
onsite education and training, as
well as design, system integration,
and project management.

For more information on repair and
calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies’
products, applications or services, please
contact your local Agilent office. The complete

list is available at:

www.agilent.com/find/contactus

Americas

Canada
Latin America
United States

(877) 894-4414
305 269 7500
(800) 829-4444

Asia Pacific

Australia 1800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1800112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1800 888 848
Singapore 1800 375 8100
Taiwan 0800 047 866
Thailand 1800 226 008

Europe & Middle East

Austria 0820 87 44 11
Belgium 32 (0) 2404 93 40
Denmark 4570131515
Finland 358 (0) 10 855 2100
France 0825010 700"
*0.125 € fixed network rates
Germany 01805 24 6333**
**0.14 €/minute
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31(0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21) 8113811(0pt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)

United Kingdom

44 (0) 118 9276201

Other European Countries:

www.agilent.com/find/contactus
Revised: October 24, 2007

Product specifications and descriptions
in this document subject to change
without notice.

Microsoft is a U.S registered trademark
of Microsoft Corporation.

© Agilent Technologies, Inc. 2008
Printed in USA, February 19, 2008
5989-6719EN

. Agilent Technologies

