
This application note is part of the
Test-System Development Guide
series, which is designed to help
you quickly design a test system that
produces reliable results, meets your
throughput requirements, and does
so within your budget.

This application note discusses hard-
ware and software design decisions
that affect throughput, including
instrument and switch selection, as
well as test-plan optimization and
I/O and data transfer issues. We
also discuss ways to optimize your
system as you prepare to deploy it.

See the list of additional application
notes in the series on page 15.

Test-System
Development Guide
Maximizing System Throughput
and Optimizing System Deployment
Application Note 1465-7

Table of contents
Introduction 2
Upfront design decisions affect throughput 3

Making hardware choices 4
Stimulus and measurement instruments 4
Power supplies 5
Switches 7
Controller/PC issues 8

Designing your test plan for speed 8
Optimizing test sequencing 8
Organizing nested loops 10
Using triggering 11
Managing wait times 11

Choosing the fastest I/O and data transfer
techniques 12

Fine-tuning your system for speed 13
Minimize software delays 13
Minimize state changes 13
Instrument-specific tips 14

Conclusion 14
Glossary 15
Related literature 15

Introduction
Throughput is a measure of the time
it takes to test a device or product.
Maximizing throughput is most critical
in high-volume manufacturing, where
you have thousands of products to
test, and you want to test them as fast
as possible. In high-volume manufac-
turing, you measure throughput in
terms of devices per unit time. The
faster you test your devices, the lower
your manufacturing costs. In design
validation testing, the speed of each
individual test is not as critical, but
test setup time is important because
you need to be able to adapt to pinouts
that change often. In design validation,
you measure throughput in terms of
tests per unit time. The faster you can
validate your designs, the faster you
can get your new products to market.
In R&D, throughput is seldom an
issue because you are not likely to
repeat tests on large numbers of
devices or to perform the same test
repeatedly on a single device.

Taking the time to optimize system
throughput may require some addi-
tional investment up front, but later
on, the payoff in lower costs and
faster time to market make the
investment worthwhile.

As we pointed out in Application
Note 1465-5, Test-System
Development Guide: Choosing Your
Test-System Hardware Architecture
and Instrumentation, a test system
is essentially a group of subsystems
that work together. The hardware
you choose for these subsystems and
the software you write to make these
subsystems communicate and inter-
act has a huge effect on your system
throughput. So, if throughput is
critical in your test application, you
need to choose equipment with the
performance and features required
for fast testing and then configure it
and program it for optimum speed.
After you’ve built your system, you
can tweak instrument setups and
operating procedures to further
optimize its speed.

In general, your system first needs to
set up a test, or configure the proper
stimulus and send it to your device
under test (DUT). Then your system
needs to actually make the measure-
ment on the DUT and transfer the
measurement data back to the com-
puter. Figure 1 shows typical steps
a computer-controlled system would
take to make a measurement. (The
steps do not necessarily have to be
executed in the order presented.)
Each of these steps takes some
amount of time to execute. To optimize
throughput, you need to analyze how
long the steps take in your system and
decide which steps you can speed up.
Depending on your application and
budget, you may decide to work only
on the steps that have the biggest
impact on your throughput, or you
may decide to invest the time and
money to eliminate every unnecessary
millisecond in the entire process.

2

Power
supply

DUT

Switch
matrix

Switch
matrix

Stimulus
device

Measurement
instrument

BUS

Computer
2, 5, 7, 9, 11

Control commands
Measurement data

3

4 1 6 1012
8

Measurement
instrument

Stimulus
point 1

Stimulus
point 2

Stimulus
point 3

Meas
point 1

Meas
point 2

Meas
point 3

Steps
1. Tell system where to connect the stimulus
2. Wait for switch to settle
3. Tell stimulus instrument what signal to send to DUT

(parameter, range)
4. Tell stimulus instrument to send signal
5. Wait for stimulus to settle
6. Tell switch to send DUT signal to measurement instrument

7. Wait for switch to settle
8. Tell measurement instrument what parameter to measure and the

range in which that parameter falls
9. Wait for instrument to process command and complete configuration
10. Tell instrument to make the measurement
11. Wait for instrument to process command and make the measurement
12. Transfer measurement information to computer

Figure 1. Steps involved in making measurements with a typical computer-controlled system.

In a typical test system, the steps
with the biggest negative impact on
throughput include instrument resets,
delays (wait statements) programmed
into the system software and waveform
downloads. Power supply settling
time, voltmeter measurements and
switching also play a role. Figure 2
shows the hierarchy of delays in a
typical test plan.

Obviously, if your system stops
functioning, your throughput drops
to zero. So, in all phases of product
test (R&D, design validation and
manufacturing test), minimizing system
downtime is critical to maximizing
throughput. To minimize system
downtime:

• Select instruments from vendors you
trust and choose instruments with
high mean time between failures
(MTBF) specifications.

• Establish a good spares program:
keep backup components for your
system, so if an instrument fails, you
can quickly swap in a replacement
and restore system functionality.

• Perform regular maintenance on
your system and its components.
Clean fan filters regularly to avoid
heat build up (high temperatures
contribute to failures). For more
information on this topic, see
Application Note 1465-8, Test-
System Development Guide:
Operational Maintenance.

In this application note we focus on
improving throughput for systems
designed with rack-and-stack test
instruments. However, most of the
concepts apply to systems built with
VXI card-based instruments as well.
VXI systems do have features that
lend themselves well to optimizing
throughput. For example, VXI back-
planes have a built-in triggering bus
that makes it easy to implement trig-
gering schemes that can minimize
system delays (see page 11 for more
information on using triggering in
your system). And digitizers, which
are available only as card-based
instruments, can trigger and return
data faster than an oscilloscope, the
closest rack-and-stack equivalent. But
VXI and rack-and-stack systems are
similar in most other regards, and
you can use many of the same tech-
niques for optimizing measurement
speeds in both types of systems.

Upfront design decisions
affect throughput
If you are designing a new system,
rather than optimizing an existing
system, you will have a greater
opportunity to maximize your system
speed. The system hardware and soft-
ware architectures, instruments,
switches, and I/O interfaces you
select will have a huge impact on
system throughput. For a detailed dis-
cussion of system hardware and soft-
ware architectures, see two of the
earlier application notes in the Test-
System Development Guide series:
Choosing Your Test-System Software
Architecture (Application Note
1465-4) and Choosing Your Test-
System Hardware Architecture
and Instrumentation (Application
Note 1465-5).

3

www.agilent.com/find/systemcomponents

Time spent during example test

Source of time spent

Instrument
resets

5 (36)

3.5 (25)

2.7 (20)

1.4 (10)

0.7 (5) 0.5 (4)

6

5

4

3

2

1

0

Se
co

nd
s

(%
 o

f t
ot

al
 ti

m
e

sh
ow

n
in

 p
ar

en
th

es
is

)

Wait
statements

Arbitrary waveform
downloads

Power supply
settling

DMM
readings

Switching

Figure 2. Hierarchy of delays in a typical test plan

Making hardware choices
Figuring out how fast your system
will perform measurements is harder
than it appears. For example, you
may decide to use a digitizer instead
of an oscilloscope, to take advantage
of the digitizer’s higher resolution.
The digitizer may be able to sample
1000 readings very fast, but if those
readings are transferred to the PC
over GPIB, it could take a relatively
long time. If you can download a deci-
sion-making algorithm into the digi-
tizer, you can send a simple go/no-go
result back to the PC, which would
make GPIB a reasonable option.
However, it takes extra effort to create
and download a decision algorithm
into an instrument, which may
increase development time as well as
“first-run” time of the test program.
Also, inside the digitizer the readings
are analyzed by a processor that is
much slower than the one in the PC,
so you need to factor in this added
time as well.

As you can see, there are many inter-
dependent factors that affect through-
put. If you are looking for test-time
reductions amounting to fractions of
milliseconds, you must weigh each of
these factors carefully. Even if your
throughput requirements are not that
exacting, the hardware choices you
make can significantly affect
throughput.

One important factor to consider
when you are selecting your instru-
mentation is command processing
time, or the amount of time it takes
an instrument to “digest” and inter-
pret a command. Command process-
ing time is usually characterized on
an instrument’s data sheet. If you
cannot find the information, ask the
instrument vendor. Command pro-
cessing times can range from less
than a millisecond to dozens of mil-
liseconds. If you send a command just
once to an instrument, it may not
have a huge impact on your overall
test time. But if you are sending the
command repeatedly during testing,
the time it takes can have a signifi-
cant impact on your throughput.

As you explore the opportunities for
improving your system throughput,
keep in mind that when you reduce
measurement time, you may sacrifice
accuracy and repeatability. If you
integrate measurements over a longer
period of time you will filter out ran-
dom noise, and your measurements
will be more accurate. Typically, you
can improve measurement repeatabil-
ity by averaging measurements,
increasing the number of samples
taken per measurement or increasing
the measurement sample time, but
you will sacrifice measurement
speed. If you cannot compromise
accuracy and repeatability, it does
not mean you will not be able to
improve your throughput.
Measurement time per se is just one
factor to consider in the overall test
plan, as illustrated in Figure 1.

In design validation, you typically
perform a large number of different
tests, so the time you spend setting
up the test system is important. To
minimize development time, use rack-
and-stack system-ready instruments
that incorporate a high percentage of
the measurement solution you need.
For example, if you use a source with
modulation capability, you don’t have
to develop your own algorithm or
integrate additional hardware to
generate the required modulation.
Using instruments with IVI-COM
drivers can save you development
time. If the instrument has an IVI-COM
driver, you can interchange hardware
without rewriting your software, as
long as you adhere to the functionality
that is specific to the instrument class.
See the application note, Test-System
Development Guide: Understanding
Drivers and Direct I/O (AN 1465-3),
to learn how decisions about drivers
affect development time.

Stimulus and measurement instruments
To maximize throughput, consider
creating a Pareto diagram of projected
delays (see Figure 2) in the system and
invest your time and money accord-
ingly. If tests A and B are of similar
duration but test A is performed much
more frequently than test B, then focus
your programming efforts, tricks and
budget on test A.

4

When you are choosing instruments,
it is important to pay close attention
to instrument specifications. For
example, the Agilent 33120A function/
arbitrary waveform generator is
popular for systems applications. But
its successor, the 33220A function/
arbitrary waveform generator, down-
loads arbitrary waveform files 100
times faster than the 33120A, and
many of its configuration times are
faster (and it also costs less than the
33120A). If you have an existing
system that includes 33120A function
generators, it is fairly easy to upgrade
to the 33220A because the two instru-
ments are programmed similarly, and
Agilent provides documentation to
help you make the switch.

When you are perusing data sheets,
pay particular attention to how
measurement speeds are specified.
Often, measurement speed specifica-
tions are related to the speed per
reading when thousands of samples
are taken, which is a data-acquisition
use model. In functional test, it is far
more common to close some relays,
take a measurement, open those relays
and move on to another measurement.
In this mode, the measurement
instrument’s single-point reading
speed is most important, and it is
dramatically slower than the fastest

possible multi-sample reading speeds.
In most cases, you will be able to look
up the single-point reading speed on
the instrument’s data sheet. Figure 3
shows that two instruments may
have dramatically different multi-
sample measurement speeds, yet
their more commonly used single-
sample measurement speeds are
almost identical.

Look for instruments that have built-
in features that will reduce the time
needed for communication overhead
and post-processing. For example,
some test instruments can calculate
arithmetic mean, minimum, maximum,
and standard deviation. When you are
analyzing multiple data points, these
statistical results are much more
meaningful than the raw data. Using
the system controller to acquire raw
measurements can be very time
consuming compared to transferring
a few measurement results.

Power supplies
Your choice of power supply can
dramatically impact system through-
put, since waiting for power supplies
to settle is typically a time-consuming
element in a test plan (see Figure 2).
Check the settling time specifications
of the power supplies you are consider-
ing for your system. If you can’t find

a specific reference to “settling time”
on the data sheet, look instead for the
“programming speed,” “programming
response time,” or “rise and fall time”
specification. Programming speed
is defined as the amount of time it
takes for the instrument to reach a
specified percentage of the voltage
setting (typically within 0.1%), not
including command processing time.
Rise and fall times are typically
defined as the time it takes to get from
10 percent of the final value to 90
percent of the final value for the rise
time, or vice versa for the fall time.
Because of the different terminology
and definitions, you must be careful
when comparing settling times in
power supplies from different vendors.

When you are trying to boost through-
put in time-critical production test
systems, look for a multiple-output
supply that can set multiple outputs
with a single command, like the
Agilent N6700 series. Otherwise,
consider using multiple single-output
power supplies instead of one multiple-
output supply. With multiple-output
power supplies, the instrument takes
extra time to parse commands,
because you are sending an additional
parameter to indicate which of the
multiple outputs it should use. Also,
with most multiple-output supplies,

5

www.agilent.com/find/systemcomponents

5000

4000

3000

2000

1000

0

140

120

100

80

60

40

20

0

5000

4000

3000

2000

1000

0

A. DMM multi-sample measurement
 speeds (readings/sec.) - no switching

4.5 digits

GPIB
DMM

PXI
DMM

GPIB
DMM

PXI
DMM

GPIB
DMM

PXI
DMM

B. DMM single-sample measurement
 speeds (readings/sec.) - no switching

4.5 digits

C. DMM measurement speeds
(readings/sec.) - no switching

4.5 digits multi-sample

4.5 digits single-sample

Figure 3. Burst speed can be misleading. This diagram compares multi-sample and single-sample 4.5-digit
measurements made with a GPIB DMM and PXI DMM. “C” combines “A” and “B” on the same scale.

commands sent to the various outputs
are processed sequentially, one output
at a time (this can be avoided with the
Agilent N6700 series). With multiple
supplies, one supply can be processing
a command while the next is receiving
a command, so you avoid delays. For
details on using this technique and
other techniques, see “10 Hints for
Using Your Power Supply to Decrease
Test Time,” publication number
5968-6359E.

Another way to reduce test time is to
choose power supplies and electronic
loads that have built-in measurement
features. With power supplies, these
capabilities let you measure the
supply’s output voltage and current.
With loads, you can measure load
input voltage and current.

A good example is testing a DC-to-DC
converter with four outputs, where
you need to measure the input voltage
to the converter and each of the four
outputs in order to fully test the device.
If you have a single DMM to measure
the voltages, you’ll need a multiplexer
to sequence through the measurements
(Figure 4). In addition to the complexi-
ty of this setup, your test program
needs to wait for the multiplexer’s
switches to move and settle for each
measurement.

The DC source and loads used to test
the converter have built-in functions
that can take care of the measurements
for you (Figure 5). They’re already
connected to the DUT, and there are
no switching delays, so both the setup
and test phases are much faster.
Note the use of remote sensing here.
Although it isn’t required, using
remote sense is generally a good idea
because it provides regulation and
measurement at the DUT rather than
at the loads or the DC source.

6

DC source
Load 1

DC to DC
converter

D
C

 in
pu

ts

D
C

 o
ut

pu
ts

+
–

+
–

+ s
+
–

– s

+ s
+
–
– s

Load 2+
–

+ s
+
–
– s

Load 3+
–

+ s
+
–
– s

Load 4+
–

+ s
+
–
– s

DC source

DC to DC
converter

Load 1
D

C
 in

pu
ts

D
C

 o
ut

pu
ts

+
–

Load 2+
–

Load 3+
–

Load 4+
–

MUX

+
–
+
– +

–+
–
+
–
+
–

+
–

+
–

+
–

+
–

+
–

+
–

DMM+
–

Figure 5. By using the built-in measurements in your DC power source and electronic loads,
you can eliminate the DMM and MUX and significantly increase your test speed.

Figure 4. Testing a four-output DC-to-DC converter with a single DMM requires a complex
multiplexing scheme and can involve significant delays.

With no need for switching, you’ll
benefit from faster tests, greater
reliability and simpler configurations.
This same approach works well for
measuring current, and it eliminates
the current shunts you’d otherwise
need.

Using power supplies that incorporate
a feature known as downprogramming
can significantly reduce test time,
particularly when you need to set
multiple voltage level settings. Without
downprogramming, the capacitor in
the supply’s output filter (or any load
capacitance) can take seconds or even
minutes to discharge when you reduce
the output voltage level (the lighter
the load, the longer it takes).

Downprogramming uses an active
circuit to force the output down to
the new level within a matter of milli-

seconds in most cases. This circuit
kicks in automatically whenever the
voltage level you set (either manually
or programmatically) is below the
present output level. The down-
programming level is fixed in most
supplies, but some offer programmable
downprogramming.

In time-critical tests, it’s a good idea
to watch out for downprogramming
delays. Because programming up is
typically faster than programming
down, try to sequence multiple tests in
such a way that each consecutive test
is at the same or higher voltage level
as the previous test. See page 9 for
more information on test sequencing.

Switches
Switches, or relays that interconnect
system instrumentation and loads to
your DUT, are an integral part of most

test systems because they allow you
to use a minimum number of stimulus
and measurement instruments to test
multiple points on your DUT. If your
test plan involves lots of switching,
switch speed will have a big impact on
your system’s throughput, so the type
of switches and the switch topology
you choose are important. For a
thorough examination of switching
in test systems, see Application Note
1441-1, Test System Signal Switching.

From a system throughput standpoint,
the most important switch parameter
is settling time, or the time it takes
to change states from open to closed
and vice versa. Figure 6 shows the
different actions and the relative
times required for a relay to be closed,
a measurement to be performed and
for the switch to reopen and be ready
for the next measurement.

7

www.agilent.com/find/systemcomponents

Settling safety margin

Ready to
switch again

Coil risetime delay

Switch bounce
safety margin

Switch timing

Switch
bounce

Mechanical
delay

Mechanical
delay

Time

Switch drive signal

Measured signal

Open
command

Source settling
and input settling

Perform measurement

Parse

"Close"
low-level
command

Coil falltime delay

Measurement trigger

Measurement complete

Data to buffer

Figure 6. This diagram shows what happens when you tell a switch to close, take a measurement, and
then reopen. The “switch drive signal” represents the actual voltage that causes the switch to change
states. The resulting “measured signal” is connected from the DUT to the measurement instrument.

Electromechanical switches, such as
reed and armature relays, are common
in low-speed applications. They are
capable of switching high voltage and
current levels, but they are limited to
switching rates of dozens of channels
per second for armature relays to
hundreds of channels per second for
reed relays. Reed relays are excellent
choices to connect measurement
instruments and low-current stimulus
to your DUT. They are relatively fast
(see Table 1), although they can have
a higher thermal offset voltage than
armature relays. Armature relays are
slower, but you can use them for higher
current loads. When you use armature
relays, group your tests so the relays
stay connected to perform as many
readings as possible at one time.

Electronic switches, such as field-
effect transistor (FET) and solid-state
relays, are typically used in high-speed
applications. However, some FET
electronic switches cannot handle
high voltage or current, and they must
be carefully protected from input
spikes and transients. Check the
electronic switch ratings carefully.

Switching topologies can be divided
into three categories based on their
complexity: simple relay configura-
tions, multiplexers and matrices.
The best one to use depends on the
number of instruments and test points,
whether connections must be simulta-
neous or not, cost considerations and
other factors. Typically, the type of
relay you choose has a bigger impact
on speed than the switch topology
you choose, unless you factor in the

time required for reconfiguring a
switching system (which, as we
noted earlier, is more critical in design
validation applications.) If you use a
switch matrix, you will be able to
quickly and easily expand and recon-
figure your system as your test needs
change. Expanding and reconfiguring
systems that use multiplexers typically
is more time consuming.

A matrix arrangement of reed relays
provides an excellent way to allow
any instrument to be connected to
any pin on your DUT, and it permits
easy expansion as you add new
instruments to your system or more
pins appear on your DUT. Matrices
use more relays than multiplexers, so
they tend to cost more. If you don’t
need to connect multiple instruments
to any pin, a multiplexer is a suitable
solution. If you have a 1 x 20 multi-
plexer for example, you can take a
test instrument and connect it to 20
pins, but you can’t hook anything else
to those 20 pins. With those same 20
relays in a matrix, you can connect
four instruments to five pins in any
combination.

If you want the ultimate in throughput
and your budget is not limited, you can
use multiple test instruments instead
of a switching scheme for making
measurements on multiple test points.
With multiple instruments, you can set
each to the needed range and eliminate
the time spent on configuring the test
instrument range, as well as the time
required for switches to open and
close. In some cases it is worth the
extra money for the test time you save.

Controller/PC issues
Unless your PC is ancient, its processor
speed is not likely to be a significant
factor in your test throughput.
Typically, issues associated with
stimulus and measurement instru-
ments, power supplies, switches and
test software play a much bigger role
in determining system speed. Your
PC is not in control of data collection
speed, and faster PCs don’t necessarily
collect data any faster. The PC’s inter-
face to your test system (GPIB, LAN,
USB, FireWire, VXI or PXI) will cer-
tainly impact data transfer time, but
that is not dependent on PC
processor speed.

Processor speed is a factor only if you
are relying on your PC for analyzing
data and if you are using it for your
software development. You want to
use the fastest PC available when you
are compiling programs, but you do
not have to do your development work
on the same computer you use to run
your system.

Designing your test plan for speed
Many test programs spend most of
the time waiting. Even if you have
selected the fastest-available hard-
ware for your system, software issues
can slow your test-system throughput
significantly. While you can tweak
your test-system programming after
your system is complete (see Fine-
tuning your system for speed, page
13), you will achieve better through-
put if you design your test plan
upfront to optimize test sequencing
and minimize delays.

Optimizing test sequencing
In most test systems, single-instrument
measurement times have a smaller
impact on overall test time than the
test flow (execution sequence) you
choose when you are designing your
test plan.

8

Table 1. Relay comparison chart

Armature relay Reed relay Solid-state relay

Switch speed 50/s 1000/s 1000/s

Contact resistance Low Very low High

Life 1 million 10 million >10 million

Typical failure mode Fails open Fails open Fails shorted

Typical max input 250 V/2 A 100 V/100 mA 250 V/10 A

In a production environment, first
arrange your test plan so the system
can find DUTs that are destined to fail
as soon as possible. If a particular
DUT frequently fails a certain test,
move that test to the front of your
test program. Ideally, of course, you
should feed reports of persistent DUT
failures back into R&D or production
engineering so they can be resolved
permanently. Agilent offers a toolset,
Fault Detective Diagnostic Solutions,
to help with this process. Fault
Detective helps you optimize through-
put by quickly diagnosing functional
failures in manufacturing and by
finding redundancies in your tests.
This toolset also helps you maximize
quality by identifying gaps in your
test process.

Next, when you are ordering your
tests, minimize the number of times
the stimulus, DUT, and measuring
instrument change states—particularly
those that take a long time—by
organizing the program’s execution
sequence. Start by looking for tests
that leave the DUT in the desired state
for the next test. If the DUT needs to
be turned off for the start of a test, for
instance, try to sequence a preceding
test that leaves it off. If a particular
test requires that the DUT is warmed
up, place it later in the sequence and
use a system timer to guarantee the
DUT has been on long enough. These
techniques can yield big improvements,
although they are not always feasible.

The program sequence shown in
Table 2 measures voltage or current
on three different DUT test points
under three different sets of input
conditions. In this case, the ambient
temperature setting is used as an
example of a stimulus to the DUT.
The temperature changes for each
test point, and the measurement
setup must also change to make the
required voltage and current mea-
surements. Each change adds time
to the test program, reducing system
throughput. For example, if you are
using a DMM and you change the
measurement function, the DMM
reconfigures the hardware and
retrieves different calibration con-
stants before making a measurement.

9

www.agilent.com/find/systemcomponents

Table 2. Typical test sequence

Measurement setup
Program step Input conditions(stimulus to DUT) (to measure signal out of DUT) DUT measurements taken

1 Set input condition 1 (e.g., amb. temp. = 0 degrees C)

2 Prepare measurement setup 1 (e.g., voltage)

3 Test point 1 voltage

4 Set input condition 2 (e.g., amb. temp. = 25 degrees C)

5 Test point 1 voltage

6 Set input condition 3 (e.g., amb. temp. = 55 degrees C)

7 Prepare measurement setup 2 (e.g., current)

8 Test point 1 current

9 Set input condition 1 (0 degrees C)

10 Prepare measurement setup 1 (voltage)

11 Test point 2 voltage

12 Set input condition 2 (25 degrees C)

13 Test point 2 voltage

14 Set input condition 3 (55 degrees C)

15 Prepare measurement setup 2 (current)

16 Test point 2 current

17 Set input condition 1 (0 degrees C)

18 Prepare measurement setup 1 (voltage)

19 Test point 3 voltage

20 Set input condition 2 (25 degrees C)

21 Test point 3 voltage

22 Set input condition 3 (55 degrees C)

23 Prepare measurement setup 2 (current)

24 Test point 3 current

If you organize the program to
minimize changes to the stimulus
conditions and measurement setups,
overall test time is reduced. Note
that the sequence shown in Table 3
provides exactly the same number
and type of DUT measurements
under exactly the same set of input
conditions as the previous sequence,
but the overall number of program-
ming steps has been reduced from 24
to 14. Also, the number of stimulus
changes has been reduced from 8 to
2, while the measurement setup has
gone from changing back and forth 5
times to changing just once.

Organizing nested loops
Structure the basic test flow so that
slow operations like setup, DUT
connections and temperature settings
are in the outermost loop. Nest faster
operations like one-button measure-
ments in lower-level loops. Place your
fastest operations in the lowest-level
loop. You can use a test flow diagram,
as shown in Figure 7, to get a better
conceptual understanding of the test
plan and prevent wasted time in
nested loops and poor use of DUT
connects and re-connects.

10

Test flow diagram — nested programming loops

Loop 1

Contains stimulus conditions that take a long time
to change or set up, for example:

Step through a variety of DUT temperatures

Loop 2

Contains test variables that take less time
to change or set up than those in loop 1, for example:

Step through a sequence of high and low DUT bias
voltage combinations

Loop 3

Contains test variables that take the least time
to change or set up, for example:

Make a DUT voltage measurement

Table 3. Test sequence optimized for speed

Measurement setup
Program step Input conditions (stimulus to DUT) (to measure signal out of DUT) DUT measurements taken

1 Set input condition 1 (0 degrees C)

2 Prepare measurement setup 1 (voltage)

3 Test point 1 voltage

4 Test point 2 voltage

5 Test point 3 voltage

6 Set input condition 2 (25 degrees C)

7 Test point 1 voltage

8 Test point 2 voltage

9 Test point 3 voltage

10 Set input condition 3 (55 degrees C)

11 Prepare measurement setup 2 (current)

12 Test point 1 current

13 Test point 2 current

14 Test point 3 current

Figure 7. To minimize overall test time, structure test loops so that the most time-consuming
operations are performed the fewest number of times.

Using triggering
In typical test routines, it is common
to apply a stimulus to a DUT, insert a
delay (wait statement) in the system
software to give the stimulus instru-
ment and DUT time to stabilize and
then instruct a test instrument to
take a measurement on the DUT.
However, the length of the required
delay is typically a guess. Instead of
adding delays to a test routine to
assure that enough time has elapsed
for the stimulus and DUT to stabilize,
use triggering from the stimulus
instrumentation (and sometimes from
the DUT itself) to initiate a reading
as soon as possible, especially if wait
time delays comprise a significant
proportion of your test time. Also,
once a triggered sequence has been
started, it is possible to make other
measurements while waiting for the
triggered measurement to finish.

You can use triggering built into a
VXI or PXI backplane or with point-
to-point wiring in a rack-and-stack
system. In a rack-and-stack system,
you need the right cables, the right
connectors and a strategy for what
is going to trigger what. In a VXI or
PXI system, triggering is easier to
implement because you don’t have
to do any special wiring.

Managing wait times
When you are writing your test-system
software, you can minimize delays by
overlapping wait periods within spe-
cific tests. Here’s a typical sequence:

• Apply a load to the DUT or set up
its programmed state and wait for
DUT output to settle

• Connect relays to engage measure-
ment equipment and wait for relays
to close

• Set up measurement instrument
and wait for setup to complete

• Initiate measurement and wait for
measurement to complete

• Disconnect relays

• Turn off power source

• Wait for DUT output to settle

Each step usually involves a wait
while the action completes. In
addition, most DUTs need time to
stabilize after power is applied or
a load condition has changed. By
separating the programming and wait
stages, you can rearrange the test to
program one instrument while waiting
for another:

• Apply load to the DUT

• Connect relays to engage measure-
ment equipment

• Set up measurement instrument

• Wait for the longest of all previous
actions to complete:
— Relays to close
— Measurement instrument to settle
— DUT output to settle

• Initiate measurement

• Wait for measurement to complete

• Disconnect relays

• Turn off power source

• Wait for DUT output to settle

Overlapping the wait periods mini-
mizes overall delays. While the DUT
is settling, the test program is busy
programming the relays and setting
up the measurement instrument.

To implement an overlapped wait,
use a common or global timer. Each
programming routine that sets up an
instrument or DUT can tell a global
timer how long each action will take;
this identifies which action requires
the longest wait. Then, when a mea-
surement or other test requires that
the previous commands be completed,
a call to a single wait function will
wait until the global timer expires
before continuing:

11

www.agilent.com/find/systemcomponents

Programming tips
for fastest throughput

• Graphical languages are not

optimized for speed, so use a textual

programming language. For fastest

throughput times, write your test

program in Visual C++ or C#.

• For fastest test execution, use

direct I/O instead of drivers to send

commands to your test instruments.

However, if test development time is

more critical in your application than

test execution time, use drivers to

minimize development time.

• Avoid the indiscriminate use of the

reset command (*RST) to return test

instruments to a known state after

a measurement. It is best to place

resets at the beginning of a test

program to initialize the hardware

the first time the program is run, then

to manage the instrument states

carefully so that they are in a benign

state (equivalent to the reset state)

at the end of the program.

• Use binary data format when

transferring large amounts of

measurement data.

• Do not use SLEEP statements for

instrument-specific timing (consider

the operation complete command,

*OPC?, the wait command *WAI,

and READ statements instead).

• Apply load to the DUT

• Connect relays to engage
measurement equipment

• Set up measurement instrument

• Wait for global timer

• Initiate measurement

• Wait for global timer

• Disconnect relays

• Turn off power source

With this approach, the test does not
have to wait any more than is abso-
lutely necessary for instrument setup,
and the programming is simpler, too.

Other techniques for reducing soft-
ware delays are discussed in the
Fine-tuning your system for speed
section on page 13.

Choosing the fastest I/O and
data transfer techniques
In some test systems, I/O speed is not
a major determining factor in overall
throughput. This is especially true
in RF systems, where the network
analyzer or spectrum analyzer may
take some time to complete a mea-
surement. However, in systems that
rely on unprocessed data, or where
real-time control is important, your
choice of I/O for your connection
between your computer and your test
system hardware can have a big impact
on the overall test time. Dedicated-
private LANs sometimes yield the
best results. However, tests indicate
that the extra overhead of all the layers
of LAN and VISA actually make LAN
slower than or comparable to GPIB
unless you are transferring a lot of
data. For the typical transactional
model of electronic functional test,
LAN may not be the best choice for
measurement instruments. Still,
even if you are not transferring large
quantities of data, LAN can perform
nicely for tasks like controlling
stimulus devices or power supplies.
LAN tends to run at its fastest if you
make a direct socket connection.

USB is about three times faster than
GPIB. FireWire is about four times
faster than 100 Mbit LAN, so it is the
best choice for a connection to a VXI
system. MXI is faster yet, but requires
a proprietary interface card in the PC.
Table 4 shows the relative speeds for
various operations for a stimulus
instrument having GPIB, USB and
LAN interfaces. The instrument’s
internal speed clearly dominates
setup changes, making I/O choices
seem moot, but download speeds get
much better with LAN and USB when
large amounts of data are involved.

Dramatic improvements in LAN speeds
are on the horizon. When LAN speeds
accelerate into the gigabit range,
using LAN will be a much faster way
to transfer data than GPIB, USB, VXI
or PXI. For more information about
I/O and its effect on system through-
put, see Application Note 1465-2,
Test-System Development Guide:
Computer I/O Connectivity
Considerations and Application
Note 1475-1, Modern Connectivity –
Using USB and LAN Converters.

Keep in mind that if your instrument’s
throughput is slow, you are not going
to get greater throughput by changing
to a faster I/O interface. You can

improve your throughput by minimiz-
ing the number of GPIB transactions
you send. When possible, send
multiple GPIB commands at one time.
This reduces bus turnaround times
and allows the instrument, in some
cases, to operate on the commands
as quickly as possible.

The character format you use to
transfer data can also affect the data
transfer rate. You can choose from a
variety of general formats, including
character string, ASCII, or binary.
Binary code is handled as bit streams,
typically in block-length message
units. These message units are more
compact than those made up of string
and ASCII characters, and therefore
they can be transferred more quickly.

For example, when you are down-
loading a data file for an arbitrary
waveform to a function generator,
downloading floating-point values
(a character string) is slower than
downloading binary values, but using
floating-point values is more conve-
nient when creating the arbitrary
waveform. Here, you need to decide
which is a higher priority, faster
data transfer (binary), or ease of use
(floating-point values in the form of
a character string).

12

Table 4. Relative I/O times from a PC to an Agilent 33220A
(data taken with a 1-meter cable on an HP Kayak XU800 with
an 800 MHz processor running Windows XP)

Interface Function change Frequency change 4K arb 64K arb

GPIB 99 ms 2 ms 20 ms 340 ms

USB 1.1 100 ms 4 ms 10 ms 185 ms

USB 2.0 99 ms 3 ms 8 ms 100 ms

LAN (socket) 100 ms 3 ms 8 ms 110 ms

Fine-tuning your system
for speed
Whether you are turning on a new
system or fine-tuning an existing sys-
tem, there are a number of techniques
you can use to improve throughput.
Relatively small adjustments to system
software, instrument setups and
operating procedures can help you
optimize your system speed.

Minimize delays
As we noted in Figure 2, delays (wait
statements) programmed into system
software typically cause systems to
run at suboptimal speeds. When you
run a test program there are some
operations — such as measuring a
complex signal or moving data to an
array — that take additional time to
complete before the next command
can be executed. If these operations
do not complete before the next
command in your program is executed,
errors can occur and the program may
halt. When debugging test routines,
programmers frequently “fix” the
problem by programming in a delay
after the operation and before the next
command. This is fine as a temporary
fix for correcting an error, but it is
important to remove the delays, or at
least to make them as short as possible,
once you find the real cause of the
measurement problem. Leaving
unnecessary delays in a program slows
down the overall system throughput.

An alternative to using a delay is to
use system-level control commands
such as *OPC? (operation complete)
to inform the control software that
an operation is complete, which is
especially useful for variable-length
operations. Many instruments are
IEEE-command compliant which
means they are able to use the *OPC
and *OPC? commands. Using *OPC?
at the end of a command tells the
instrument to return a +1 in response
to the query as soon as the instrument
command has finished executing. The

next command in the program
sequence can execute without any
unnecessary delay.

You also can use SRQs (GPIB service
requests) and IRQs (Windows interrupt
requests) to minimize delays in your
test software. The interrupt structure
eliminates the necessity to conduct a
poll or a loop waiting for something
to happen. Such loops are time-
consuming to write and slow to
execute. With an SRQ or an IRQ, the
hardware tells the control software
when it is ready to have its data read
(similar to a trigger).

Minimize state changes
We discussed ordering tests to
minimize state changes in the
“Designing your test plan for speed”
section on page 8. If you optimized
the order of your tests during the
design phase, you may not need to
tweak it after your system is up and
running. If you are fine-tuning existing
system software that was not written
with speed in mind, you may find
many opportunities to improve your
throughput by reordering tests. Range
and function changes are relatively
slow and can interfere with fast tests.
To compensate, arrange your tests
such that tests involving different
parameters or different ranges are
grouped rather than intermixed. It
is also helpful to pick a range that
gives the needed resolution for most
measurements and then keep it there.
If you need to test multiple ranges or
multiple parameters and your budget
allows, you can use multiple test
instruments and set each to a specific
range or parameter.

Instrument-specific tips
To maximize throughput, make sure
your test instruments are configured
for speed. The following suggestions
apply to many of today’s instruments:

• Make sure you are using the latest
version of the instrument’s firmware.
Firmware upgrades sometimes
include significant measurement-
speed enhancements.

• Turn off the display. Updating the
display slows the reading time.

• Turn off all math/processing,
unless using it allows the instrument
to send a single pass/fail result
instead of a stream of data.

• Set autozero to “once” or “off,” as
this feature can double measurement
time. However, do this only if the
temperature drift in the system is
minimal. Otherwise, an autozero
should be performed periodically.

• Use the lowest-level commands you
can. Instead of using “measure?,”
use “config” “init” and “fetch?.” You
do have to pay attention to where
and how your readings are stored
when you use these commands.
For example, the Agilent 34401A
multimeter treats “read?” and “init”
followed by “fetch?” exactly the
same except for where it stores the
readings. INIT/FETCH buffers the
readings, whereas READ places
them immediately to the output
buffer. By omitting this extra
buffering step, you can get your
reading to your computer faster.

• Use the fewest digits of resolution
needed for the required accuracy.

• Avoid using “auto-range.” Define the
expected value of a measurement
so the instrument spends less time
searching for the proper range.
Bear in mind, though, that a mal-
functioning DUT could result in a
reading outside of the selected
range. Your program must be able to
react to overload readings correctly.

• Whenever possible, use preset
states that can be used to recall
instrument state setups.

13

www.agilent.com/find/systemcomponents

In addition to the general techniques
listed above, there are specific tech-
niques you can try with different
types of test instruments:

Function generators
• Configure your setups in advance

and store them into memory loca-
tions. Instead of sending down
multiple commands to configure
the instrument, you can recall the
instrument state with a single
command.

• When downloading arbitrary wave-
form data, send it in binary format
rather than ASCII. Download the
smallest number of arbitrary
waveform points you can.

• Consider using modulation to
respond to your system (AM, FM,
PWM, PM, FSK). If you need the
generator to respond to something
else in your system, rather than
reading a value and reconfiguring
the function generator, see if you
can use a control signal or even a
conditioned signal as an external
modulation signal.

Counters
• Use ASCII format for fastest

throughput (note: this is different
from other instruments)

• Select the trigger level instead of
using auto level

• Use the auto arming mode

• Disable printing operation

• Define the trigger command so the
fetch command does not need to be
sent for every measurement

• For some measurements, a counter
may produce readings in which the
last few digits are not stable. This
can slow a test if a human operator
needs to discern the difference in
readings. Truncating the last digits
will produce a more understandable
display, but some tests require that
extra resolution. Have the counter
calculate the arithmetic mean if you
require high resolution and a stable
reading, or use a limit-testing mode.

Digital multimeters
• When using a scanning meter like

the Agilent 34970A, wire adjacent
channels so that the DMM doesn’t
have to switch modes or ranges

• Select the shortest channel delay
(zero)

• Turn off scaling

• Turn off alarms

• Use the fast filter (PLC 0.02)

• Turn off T/C (thermocouple) check.
Some scanning meters will check
for the existence of a thermocouple
by looking for a short circuit before
attempting to read the thermocouple
voltage.

• Shield the measurement setup to
reduce noise pick-up from the oper-
ating environment. Shielding may
allow you to make measurements
with shorter measurement times
(aperture) or with less filtering
and still achieve sufficient noise
rejections to obtain the required
accuracy.

• Try to make all readings with the
DMM “LO” terminal connected to
circuit low. DMMs have fairly large
values of capacitance between “LO”
and earth which must be charged
(increases settling time) when you
make “floating” measurements.

Scopes and digitizers
• If you are importing raw data, use

binary transfer mode. Specifically,
use byte or word formats. Word
format is more accurate but requires
twice as much data to be sent over
the bus. Some scopes produce more
than 8-bit resolution, but many
acquisition modes produce only
8 bit data. In these cases, transfer-
ring word versus byte data will take
twice as long and not provide any
additional resolution. It is important
to know how and when the instru-
ment produces extra resolution.

• Capture only as much data as you
need to analyze.

• Turn off special features like mask
test, jitter analysis and FFT
functions.

• Make sure you have an adequate
trigger rate, and use the fastest
sweep speed (timebase scale) that
is consistent with your application.
Long acquisition times and/or slow
trigger rates can gate your through-
put if your analysis program is
very fast.

Power supplies
• If your power supply has list mode,

use it to store complete instrument
setup states and recall them with a
single command, rather than sending
a long series of configuration steps.

• Use the built-in measurement
capabilities

• Use power supplies with
downprogramming capability

Conclusion
If you want to maximize system
throughput, you need to choose the
right equipment and program it for
optimum speed. The system hardware
and software architectures, instru-
ments, switches, and I/O interfaces
you select have a huge impact on
system throughput. If you carefully
evaluate the complex interplay of the
hardware and software elements of
your test system, you will find many
opportunities for improving the speed
with which your system performs
measurements. After you’ve built
your system, you can tweak instrument
setups and operating procedures to
optimize speed. The time you spend
doing so will help lower your costs
and accelerate your time to market.

14

Glossary
C#—(pronounced “C sharp”)—a new C++-
like, component-oriented language that was
built to run on the .NET Framework

FireWire—a high-speed serial bus defined
by the IEEE 1394 standard

Interface—a connection and communica-
tion media between devices and controllers,
including mechanical, electrical, and
protocol connections

IVI—interchangeable virtual instruments—
a standard instrument driver model allowing
you to swap instruments without changing
software. Learn more at
http://www.ivifoundation.org/

IVI-COM—IVI-COM presents the IVI driver
as a COM object in Visual Basic.

VISA—virtual instrument software
architecture

VXI—VXI is a standard, open architecture
for cardcage test systems. The VXIbus
(VMEbus eXtensions for Instrumentation)
was developed by a consortium of test-and-
measurement companies to meet the needs
of the modular instrument market.

Related Agilent literature

Data sheets
Agilent 3499 Switch/Control System,
pub. no. 5988-6103EN

Agilent 34970A Data Acquisition/Switch
Unit, pub. no. 5965-5290EN

Agilent Fault Detective Developer
Application and Run-Time Engine,
pub. no. 5988-4009EN

Agilent 33220A 20 MHz Function/Arbitrary
Waveform Generator, pub. no. 5988-8544EN

Agilent N6700 Low-Profile Modular Power
System, pub. no. 5989-0489EN

Application notes

Test-System Development Guide:

• Introduction to Test-System Design
(AN 1465-1) pub. no. 5988-9747EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9747EN.pdf

• Computer I/O Considerations
(AN 1465-2) pub. no. 5988-9818EN,
http://cp.literature.agilent.com/
litweb/pdf/5988-9818EN.pdf

• Understanding Drivers and Direct I/O
(AN 1465-3) pub. no. 5989-0110EN
http://cp.literature.agilent.com/
litweb/pdf/5989-0110EN.pdf

• Choosing Your Test-System Software
Architecture (AN 1465-4)
pub. no. 5988-9819EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9819EN.pdf

• Choosing Your Test-System Hardware
Architecture and Instrumentation
(AN 1465-5) pub. no. 5988-9820EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9820EN.pdf

• Understanding the Effects of Racking
and System Interconnections
(AN 1465-6) pub. no. 5988-9821EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9821EN.pdf

• Maximizing System Throughput and
Optimizing Deployment
(AN 1465-7) pub. no. 5988-9822EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9822EN.pdf

• Operational Maintenance
(AN 1465-8) pub. no. 5988-9823EN
http://cp.literature.agilent.com/litweb/
pdf/5988-9823EN.pdf

• Using LAN in Test Systems: The Basics
(AN 1465-9) pub no. 5989-1412EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems: Network
Configuration
(AN 1465-10) pub no. 5989-1413EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems: PC
Configuration
(AN 1465-11) pub no. 5989-1415EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and Measurement
Environment
(AN 1465-12) pub no. 5989-1417EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1417EN.pdf

• Using LAN in Test Systems: Applications,
(AN 1465-14) (available in February 2005)

Modern Connectivity—Using USB and LAN
Converters, (AN 1475-1) pub. no. 5989-0123EN

10 Hints for Using Your Power Supply to
Decrease Test Time, pub. no. 5968-6359E

Test System Signal Switching,
(AN 1441-1), pub. no. 5988-8627EN
http://cp.literature.agilent.com/litweb/
pdf/5988-8627EN.pdf

Improving Throughput in Network Analyzer
Applications, AN 1287-5, pub. no. 5966-3317E
http://cp.literature.agilent.com/litweb/
pdf/5966-3317E.pdf

To discover more ways to simplify system
integration, accelerate system development
and apply the advantages of open
connectivity, please visit the Web site at
www.agilent.com/find/systemcomponents.
Once you’re there, you can also connect with
our online community of system developers
and sign up for early delivery of future appli-
cation notes in this series. Just look for the
link “Join your peers in simplifying test-
system integration.”

15

www.agilent.com/find/systemcomponents

By internet, phone, or fax, get assistance with all
your test & measurement needs

Online assistance:
www.agilent.com/find/assist
Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2111
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (650) 752 5000

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
(e-mail) tm_asia@agilent.com

Microsoft and Windows are U.S. registered trademarks
of Microsoft Corporation.

Product specifications and descriptions in this docu-
ment subject to change without notice.

© Agilent Technologies, Inc. 2004
Printed in the USA December 9, 2004
5988-9822EN

www.agilent.com/find/emailupdates
Get the latest information on the products and
applications you select.

Agilent Open Connectivity
Agilent simplifies the process of connecting and
programming test systems to help engineers design,
validate and manufacture electronic products.
Agilent’s broad range of system-ready instruments,
open industry software, PC-standard I/O and global
support combine to accelerate test system
development. More information is available at
www.agilent.com/find/openconnect.

www.agilent.com

