
When you order a new test and measurement instrument, you may
discover that it has a local area network (LAN) interface along with
the more traditional GPIB interface. Test and measurement instru-
ment makers Agilent Technologies, Racal Instruments, Keithley and
others have been shipping instruments with LAN (Ethernet) inter-
faces for more than a year. Using LAN lets you communicate with
your instruments remotely; it is fast and simple, and you don’t need
any additional proprietary software or cards. In this application note
we show you how to communicate with instruments on the LAN from
your PC using Microsoft® Visual Basic. You can download the code
examples from www.agilent.com/find/socket_examples.

Connecting the instrument
You can connect a test instrument
directly to a network LAN port
with a LAN cable, or you can con-
nect your instrument directly to
the PC. If you decide to connect
the instrument directly to the PC
LAN port, you will need a special
cable called a crossover cable.
Once the instrument is connected,
you must establish an IP address
for it. Dynamic Host Configuration
Protocol (DHCP) is typically the easiest way to configure an
instrument for LAN communication. DHCP automatically assigns
a dynamic IP address to a device on a network. See the instrument’s
user’s guide for more information on this topic.

Communicate with Test Instruments
Over LAN Using Visual Basic

Application Note 1555

Figure 1.

Ethernet connection
to LAN on an N6700A
modular power system

2

Testing communication using the Windows command prompt

Once you have an IP address, test the IP address from your PC.
Go to the MS DOS command prompt window (in Windows 2000 the
menu sequence is Start>Programs> Accessories>Command Prompt).
At the command prompt, type
ping <IP address>. The IP address
is four groups of numbers separat-
ed by decimal points. If everything
is working, your instrument will
respond. Figure 2 shows a suc-
cessful ping response.

Testing communication
using HyperTerminal

Alternately, you can test the communication to the instrument with the
Windows HyperTerminal program (Start >Programs >Accessories >Com-
munications >HyperTerminal). When the Connection Description dialog
box appears, type a name and click OK. The name will be used to save
your settings. Next, in the Connect To dialog box, select TCP/IP
(Winsock) and type in the IP address for the instrument. The port num-
ber determines the protocol for the communication.
We will use ASCII characters and instrument SCPI
commands. The Internet Assigned Number Authority
(IANA) registered port number for the instrument
SCPI interface is 5025. Some instrument manufac-
tures may choose to use a unique port number; check
the instrument documentation for the the port num-
ber. Now go to the File>Properties menu and select the
Settings tab and click ASCII Setup…. Select Send line
ends with line feed and Echo typed characters locally (see
Figure 3). Click OK to close the dialog boxes. In the
terminal window type in *IDN?, and hit Enter. Do not
use the backspace key or any editing keys. If every-
thing is working, you will get back the manufacturer
and model number. Save the settings with Save as…

In order to communicate with the instrument from Visual Basic, you
will need both the port number and the IP address. It is a good practice
to verify both before you begin programming.

Using MS Visual Basic to communicate

Now that the connections are confirmed, we are ready to use
Visual Basic. Visual Basic 6.0 comes with Winsock control. From
the Components dialog box (Ctrl-T), find and select the Microsoft
Winsock control. Once the Winsock control is available in the
Toolbox, place it on the form. There are three steps to make a
connection to the instrument in the Form Load event: first you

Figure 2.

Response to a ping for a
working LAN connection

Figure 3.

ASCII setup for Windows
HyperTerminal for LAN
communications

3

must insert the IP address (RemoteHost), as well as the port number
(RemotePort), then invoke the connect method. The code created
by the Winsock control is shown below.

If (Winsock1.State = sckClosed) Then
' Invoke the Connect method to initiate a connection.
Winsock1.RemotePort = "5025"
Winsock1.RemoteHost = "177.140.77.204"
Winsock1.Connect

End If

The connection may take a bit of time, so this is a good place to add
a wait statement or to test the connection status. You can test the
connection status with this code

Dim status as Long
If Winsock1.State = sckConnected then debug.Print "Connected"

Once connected, the Windows Sockets object is ready for
communication.

Sending instrument commands

Sending a string to the instrument is straightforward. Note that we add
a carriage-return line feed at the end of the command.

Winsock1.SendData "*IDN?" & vbCrLf

You can get the response in one of two ways. If the above string is in
a button, clicking the button sends the string command and then exits
the subroutine. When exiting the subroutine, Visual Basic is idle and
events can be executed. In that case, receiving the data is just a
matter of waiting for the DataArrival event to fire and then
retrieving the data like this:

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)
Dim strData As String
Winsock1.GetData strData, vbString

End Sub

4

However, most of the time you want to write and read several times
without exiting the subroutine. To do this, we wrote a simple ReadString
routine that will allow you to do just that. The ReadString routine
immediately checks the connection buffer and then executes a DoEvents
until the buffer has increased in size indicating the arrival of the latest
data. DoEvents allows VB to pause the subroutine and capture an
event such as the instrument response to a query on the LAN.

This is a shortened version of the ReadString subroutine contained
in the example VB project.

Rather than add a carriage return line feed every time we send a string,
we also wrote a WriteString routine that adds the vbCrLf

Using these two routines, you can check the ID of an instrument and
place it into a text box with the following code:

Public Sub WriteString(skt As Winsock, ByVal cmd As String)
skt.SendData cmd & vbCrLf

End Sub

WriteString Winsock1, "*idn?"

txtID.Text = ReadString(Winsock1)

Public Function ReadString(skt As Winsock) As String
Dim strData As String
Dim numbBytes As Long
Dim i As Long

numbBytes = skt.BytesReceived

DoEvents

' check repeatedly if there is new data.
For i = 1 To 10000

If skt.BytesReceived > numbBytes Then Exit For
DoEvents

Next i

' Gets the data and Clears buffer
skt.GetData strData, vbString
ReadString = strData

End Function

5

Examples downloads

A complete Visual Basic and C++ project that demonstrates sockets
with Agilent instruments is available for the Agilent 33220A function
generator and the N6700A modular power system at www.agilent.
com/find/socket_examples. All the instrument-specific code is in one
command button subroutine. You
can easily modify either of these
projects for other instruments.

The example Visual Basic code
brings up a dialog box for making
the LAN connection. The port
number is set to 5025. If it
needs to be changed, change
the constant RemPort in the
modWinSock module. Start the
code. Type in the IP address and
click on Connect. The progress of
the connection will be shown in
the Messages field. The instru-
ment-specific code is in the click
event for the button labeled Start.

Conclusion

Using sockets in Visual Basic with LAN-enabled instruments
eliminates the need for proprietary I/O library code loaded to
the PC. This approach is very fast, it enables remote operation,
and it is easy to implement in Microsoft Visual Basic.

Figure 4.

User interface of VB
software example to make
connection to instrument
with sockets

Publication title Publication Publication Web address
type number

33220A 20MHz
Function Arbitrary Waveform Data sheet 5988-8544EN http://cp.literature.agilent.com/litweb/pdf/5988-8544EN.pdf
Generator

N6700-series Modular Data sheet 5989-1411EN http://cp.literature.agilent.com/litweb/pdf/5989-1411EN.pdf
DC Power Supply

Related Agilent literature

By internet, phone, or fax, get assistance with
all your test & measurement needs.

Online assistance:
www.agilent.com/find/assist

Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2111
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (650) 752 5000

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
Email: tm_ap@agilent.com

Product specifications and descriptions in this
document subject to change without notice.
02/18/2005

© Agilent Technologies, Inc. 2005
Printed in USA February 18, 2005
5989-2316EN

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Open:
Agilent simplifies the process of connecting and programming test systems to help engineers design,
validate and manufacture electronic products. Agilent's broad range of system-ready instruments,
open industry software, PC-standard I/O and global support all combine to accelerate test system
development. More information is available at www.Agilent.com/find/systemcomponents

www.agilent.com

Microsoft is a U.S. registered trademark of Microsoft Corporation.

