G aotneooveasemoniintbaer L B ST IE]
P EX o

Signal Extractor for DigRF

Input Bus/Signal

[RxTx Data

[~ Start Sample = I
I End Sample al I

Extractor Algorithm
File Name: DigRF_1_12_Trig_Qualz.xml

Algorithm: DigRF 1.12 Trigger Qualified

Load algorithm... |

OK Cancel Help |

Making RF Measurements on
Digital Serial Data with Agilent’'s

Signal Extractor and the 89601A
Vector Signal Analyzer

Application Note 1593

Agilent Technologies

Table of Contents

Introduction 3
Digital signals replacing analogt 5
Interfaces changes 5
Serial or parallel? 7

Measurement Basics 7
Logic analyzer basiCsvuuuiii 7
Vector signal analyzer basics 9
What kinds of measurements dowe need? 9
Signal integrity Measurementsoiuuteitie e 1"

The B4602A Signal Extractor Toolciiiiii.. 12
Extractingthe data i 12
Understanding the algorithm 14

Setting up the Logic Analyzer with Signal Extractor and the 89601A Software22
Getting Started i 22
Logic analyzer 23

Setting up the logic analyzer 23
Logic analyzer resultst 30
Vector signal analyzer i 33
Setting up the vector signal analyzer i 33
Vector signal analyzer results oo 39

SUMMAIY . . . e Ly

Appendix A: DigRF 1.12 Physical Layer Overview 42

Salesand Service 51

Introduction

This application note is designed to guide you through making measurements on
serial data using an Agilent logic analyzer with the B4602A Signal Extractor tool
and Agilent’s 89601A vector signal analyzer (VSA) software. Specifically, we will
look at the serial 1Q interfaces from a DigRF 1.12 signal and use a preset algorithm
from the B4602A tool to extract the |Q data for demodulation and logic analysis.
Whether you are a digital engineer faced with making RF-type measurements

or an RF engineer trying to make digital measurements, this note will help you
understand how to accomplish your measurement goal.

Bl fi Coord Spren Ioput Tewdenn Messnp (aply Troce Makers (e Hep
pinle |AGO6EE @S = koo M| E

i

i
I

[r—— [T N1 REF CAL Hune

Figure 1. 89601A vector signal analysis software gives you
multiple ways to view your data.

Introduction

The vector signal analyzer is a powerful tool for time, frequency and modulation
domain measurements. Modulation domain measurements such as EVM,
constellation and eye diagrams give you a good look at what your devices are
really doing. Error vector time displays offer you insight into such things as
filtering problems, distortion and frequency errors. Eye diagrams show you symbol
timing that can reveal errors in clocking. The symbols/error summary table gives
you a variety of information including 1Q offset, phase, and magnitude error as
well as EVM — it even shows you which symbols are causing the most trouble.
For pulsed signals, you can look at pulse shape and timing. In all cases, you can
directly correlate between the logic and RF measurements for digital 1Q signals.

The logic analyzer tells you quite a bit, too. Are the levels correct? Are the right
number of bits there and are they in the correct order? The logic analyzer allows
you to directly correlate the data sent with the data received. You also can switch
to timing mode to ensure the edges of clocks and bits are lined up correctly.
Using the VSA with the logic analyzer allows you to check the accuracy of the
modulator, filters and more.

Blcie £dt view Setup Tools Markers RunfStop Waveform

DEEES @& ha WTH Q&R Y'Y ||> %
Click here to nsert new measurement s

Scale [200nsidv B[ane[sr Delay [200 ns B ne [T 20

I i I
My hus | k X o

My bus Q[0
My s apt

My bus Q[2
My bus f3
My bus Q[4
My bus ls

My bus Ql6

F-Mybus 7

My bus Gl
|

Figure 2. Agilent's logic analysis interface waveform view
gives us a good picture of the relationships between the
signals as well as a look at the waveforms themselves.

Introduction

Digital signals replacing analog

Interface changes

Serial or parallel?

Digital signals are taking the place of analog in many areas. Traditionally, analog
interfaces between RFICs and BBICs were standard. Now, chip manufacturers are
producing chipsets with digital interfaces. Standards such as 0BSAIl and CPRI for
base station chips and DigRF for mobile chips define a variety of digital interface
possibilities. WiMedia defines a digital interface between the MAC and PHY chip.
And it doesn’t stop there — these types of digital interfaces are becoming common
in software-defined radios (SDRs), satellite communications and radar systems, to
name a few. This is a trend that is going to continue.

It makes sense — digital signals are easier and cheaper to implement and they will
eventually enable better signal quality and lower power consumption. When such
signals are implemented serially, they can also reduce the number of required IC
pins, which saves chip makers money, and the saving typically is passed through
to the end customer of consumer products.

The transition of analog to digital has not, however, changed the physical layer
test requirements, and traditional analog test and measurement equipment is
not suitable for digital RF design validation. Up until recently, this presented a
problem. For example, how are we to make an EVM measurement off digital
signals coming from an FPGA? The good news is that there is a way to do

this using Agilent’s logic analyzer tools with the 89601A vector signal analysis
software, or the “digital VSA" as it's often called. Digital IQ signals from any
logic device that can be connected to a logic analyzer can be measured in time,
frequency and modulation domains.

The transition from analog to digital interfaces does not involve a great deal of
architectural change, but it does involve a move of the ADC/DAC circuitries from
the RFIC to the BBIC. In some cases, the digital filtering is moved from the BBIC
to the RFIC.

Originally the digital interfaces were parallel — indeed, many still are. However, pin
count on an IC is a precious resource. The average pin count for a digital parallel
1Q interface is about 32 pins (not including the clocks) for a 16-bit | and 16-bit Q
signal. Reduction of pin count is therefore a serious matter. Multiplexing turns

out to be an easy way to implement the serial bit stream instead. This allows

the signals to share common pins and greatly reduces pin count. Digital | and Q
signals can be put into a serial format with some kind of time division multiplexing
scheme. In some cases, as in DigRF Version 3, control data is multiplexed in,
making measurements a little trickier.

The ADCs used to be located in the
and the chip interface was analog.

BBIC

Memory
- y
r
Spaech Controller
Decode
Zpphications
U ntemcs
DSP
Protagol
H Control
Speech
Encode

cnannél
Encoder &
specmal
Shaping

PCl/USB
100 base T

Modern design has the ADCs placed in the
RFIC, making the chip interface digital.

i Memory
~H O :
1 | . ; = - g !
H n ' Best _ i Speech C
@' Synth e | . Applications
| l—User Interface
= o DSP Pml::cnl
_ 3 Speech HW Control
Encode
| | OO—RE % i
A ’ . . : r
O/ H T E g [l [| s
o : Spectral
' .:‘ Shaping

BBIC

Figure 3. Changing interfaces

Measurement Basics

Logic analyzer basics

Many engineers entering the new world of digital signals are not very familiar with
logic analyzers. Logic analyzers are not like spectrum analyzers or power meters
or any of the standard analog test and measurement equipment. They are capable
of performing very complex measurements on digital signals, and at first glance,
they can look quite intimidating. The term “digital signals” refers to signals that
take on a value of either 1 or 0, regardless of the type of logic (TTL, CMOS etc.)
used. Logic analyzers are not as intimidating as they sometimes seem to new
users at first glance. Once you become comfortable with the instrument, you'll
realize that it's really quite easy to use.

The role of the logic analyzer:

A logic analyzer is a tool that gives you insight into the operation of a digital
circuit by

+ Connecting to your DUT (device under test)

+ Capturing and storing the digital waveforms

+ Analyzing the stored data and displaying the results

With digital signals, the logic analyzer can:

+ Record a circuit’s logic levels over time, and let you examine the record

+ Show whether or not a particular event happens (the trigger)

* Provide a precise measure of time between events

+ Inverse-assemble a microprocessor’s logic levels to tell you what code was
running

+ Analyze complex buses and protocols

A logic analyzer is the perfect tool for connecting with the 89601A software for
time, frequency and modulation domain measurements on digital 1Q signals.

There are three steps to the logic analyzer process:
+ Connect
+ Acquire

+ Display data

Measurement Basics

Logic analyzer basics (continued)

Connect:

You have a few choices for connecting your logic analyzer to your DUT. First,
there are general-purpose probes such as the flying lead probes. These probes
have individual pin connectors. They are not always the best solution because
sometimes there are signal integrity issues when you connect wire to wire, but
they can be very handy when there is no other way to probe. They can also be
used when it is necessary to get physically close to the DUT, as is the case in
DigRF.

Another way to connect involves: building a “footprint” into the board ahead of
time. It's fairly common to enable probing this way: think about digital debug
ahead of time, plan for it, and design connectors into the board. This is no
different from putting test points onto an RF board (SMAs or SMBs) that can

be easily hooked up to a cable and spectrum analyzer. The footprint is a little
bigger, but there are many digital signals instead of a single RF signal. A Samtec
connector is an example of a solid connector that requires a footprint to be built
into the board prior to fabrication.

X2 Agilent

Figure 4. Flying leads Figure 5. Samtec connector

Acquire:

There are two measurement modes in logic analysis: timing and state. Timing
analysis is for logic timing; it shows you when a logic event transitions. Timing
analysis is asynchronous and uses the logic analyzer clock to determine when
signal transitions occur relative to one another. With state analysis, we look
primarily at events themselves: it shows where you would look for events that
happened, as opposed to timing relationships. In state mode, the clock comes
from the DUT. While we can certainly use timing mode to check signal transitions,
when you use a logic analyzer with the 89601A software, we must using state
mode. We are concerned with the bits (or samples as they are known in the logic
analyzer world) and the order in which they appear.

Measurement Basics

Logic analyzer basics (continued)

Vector signal analyzers basics

Display data:

In state mode, we are interested in seeing the data, and there are two ways of
viewing it. State analysis uses the clock on the device under test as the sampling
clock. This means that data is only sampled when it is valid, which just means
the data is not transitioning. (We look at transitioning signals in timing mode.)
The output in state mode is a listing of the values that crossed the bus, with

the option of a time stamp noting when the values occurred. The state listing
window will tell you what the values were going across the bus at the time the
clock transitioned. This is used to track functional problems and code flow. In the
waveform view, we can see the actual data on the bus.

The vector signal analyzer (VSA) is an FFT analyzer. FFT analyzers are “block”
processors. They take in chunks of data from memory. This means the instrument
takes in time data and performs FFTs to give the frequency domain data. It

retains phase and amplitude data. The 89601A software is the FFT analyzer, and
the retention of phase and amplitude data allows us to view both digital and RF
signals in the RF and demod domain. When an FFT analyzer takes in data, it pulls
it first from sample memory. This sample memory resides in the logic analyzer.
The samples are transferred from the logic analyzer memory by the logic analyzer
software, and out to the 89601A software for post-processing. Of course, when
the Signal Extractor is used, only pertinent samples are transferred.

The speed with which the data is transferred to the software is dependent on
the configuration you use. It is generally faster when both the logic analysis
software and the VSA software are running on a common computer — it can be a
separate computer, or it can be the logic analyzer’s internal computer. The VSA
is also a recording device, as is the logic analyzer. Whether or not the VSA is
used as a recording device is up to you. However, it is necessary to understand
time relationships in an FFT analyzer before it can be used as such. The 89601A
software contains an extensive tutorial on these relationships, and this tutorial
can be viewed without a license.

Measurement Basics

What kinds of measurements do
we need?

10

We will use a DigRF 1.12 signal as an example. The DigRF 1.12 standard defines
the digital interface between the BBIC and RFIC for GSM, GPRS and EDGE.
Appendix A contains a summary of the standard for readers who are unfamiliar
with it. The signal of interest to us is the RxTx data. This signal contains | and

Q data, multiplexed with padding. The padding (inserted zeros) is typically used
as a way to ensure proper timing. Adding padding guarantees that there are
always samples available for each clock cycle. The number of padded bits used
is dependent on the number of bits used for | and Q and the clock rate. Appendix
A explains this in more detail. In this example, we will use a DigRF 1.12 Rx mode
signal with GSM only. This means the signal is traveling from the RFIC to the
BBIC, and the 1Q data contains only GSM modulation.

Rx mode s

RxTx En

CtilData

CtilEn

CulCk

Strobe

SysClk

SysClk En

Figure 6. DigRF 1.12 interface between the RFIC and BBIC

Measurement Basics

What kinds of measurements do
we need? (continued)

Signal integrity measurements

We can look at several scenarios. First, we do need a way to isolate the 1Q data
from the padding in the serial stream. Then we need to present the IQ data in

a format that is understood by the 89601A software. Once this is done, we can
look at the types of measurements required by the standard (for instance, GSM)
— typically modulation quality measurements. Examples of this would be error
vector magnitude (EVM), frequency error, and phase error. We may also want to
make proof-of-concept measurements. In other words, we might want to look
at the spectrum to ensure we have no DC offset and that the spectral shape is
correct, etc.

Terminology differences:

It is important to note that the term “sample” means something different in the
logic analyzer realm than it does in the DigRF specification. In logic analyzer
parlance, a sample refers to a portion of a signal at a specific clock cycle. The
state of a digital signal at a particular clock cycle is stored as a “sample” in
memory. In the DigRF 1.12 spec, a sample refers to something a little different.
Before we explain the difference, we must first understand what a symbol is.

Symbol: In IQ modulation, each “piece” of data is transmitted as a symbol. A
symbol contains one “I” value and one “Q" value. Each | or Q value can represent
one bit, or it can represent many bits — it's entirely dependent on the modulation
format. In the DigRF 1.12 specification, there are four bits per symbol. Although
GMSK only uses one bit per symbol, 8PSK uses three bits per symbol. However,
the DigRF 1.12 specification uses four bits per symbol as standard, and the
differences between hits per symbol for each modulation type are accounted for
in the RFIC, which contains the GMSK and 8PSK modulators. In this specification,
symbols are generally referenced as being transmitted from BBIC to RFIC.

Sample: In the DigRF specification, a sample is a portion of a symbol comprising

a specific number of bits. Samples are only referred to in receive mode. In one
example, there are two samples per symbol, and 96 bits per sample (there are

64 bits of padding after each 16-bit | and Q), giving 192 bits per symbol. In our
example, we are using an Rx signal with one sample per symbol and 96 bits per
sample (still with 64 bits of padding), giving a total of only 96 bits per symbol.
Samples are referenced (in the DigRF 1.12 specification) as being transmitted from
the RFIC to the BBIC. Samples are multiplexed, meaning that the samples (or bits)
within each symbol can be sent in any particular order — there is no requirement
to send the first sample or bit of any symbol first, and there is no constraint on the
RFIC to send full symbols at a time. Symbols sent from the BBIC to the RFIC are
not multiplexed, and they are sent in the order needed for transmission over the air.

A logic analyzer complements an oscilloscope for making signal integrity
measurements. A logic analyzer’s timing mode is used to see the timing
relationships between the signals and buses in your system, and the state mode is
used to see a sequence of events. You can also use an Agilent logic analyzer’s eye
scan feature to simultaneously display eye diagrams on all channels, allowing you
to identify problem signals for further analysis with an oscilloscope. For detailed
parametric signal analysis, however, use an oscilloscope to look at things like
overshoot, undershoot and jitter. Extensive literature is available on making signal
integrity measurements with oscilloscopes.

1

The B4602A Signal
Extractor Tool

12

For our example, we will look at data transmission from the RFIC to the BBIC with
one sample per symbol. Each sample contains 16 bits |, followed by 16 bits Q, then
64 bits of padding.

[T Minc] Agicnt L LES\DIGIET 112 s-000] - 111 S4ria ETOCT08 It 18 %

Blleke et yew Shp fook Meders EafSon Wavelam Wrdw Heb =18 x
DED&E B ad wTH @& = |k e A Al

ilto b2 = 3i2ns

sce [0 AR

(IS Ed FTA

168Bits| § 18Bis0 &4 Bits of Zero Padding

_1 DigRF 1.12 Sample

Nlo ¥
W
Overvew] [0 O 1125€ Lvn | R OWAF 112 5E ove | [Pro Sl Evhacten [P Sio0s Esavion .|

Figure 7. One DigRF 1.12 RxTxData sample viewed on
Agilent’s logic analyzer software

A logic analyzer can show us the samples, symbols and timing between them. It
can also show the control data and clocks and strobe. However, when we need to
demodulate, another step is needed. The VSA software doesn’t need control data
or padding, but it does need the 1Q data and it needs it in parallel form. To get this
data into the VSA, we'll need a new tool, the B4602A Signal Extractor tool.

The B4602A Signal
Extractor Tool

Extracting the data

The Signal Extractor uses algorithms to extract the bits we need. Some algorithms
come standard, and others you will need to create yourself. A useful way to

think of the Signal Extractor tool is as a data extractor and logical reformatter.
Both the DigRF 1.12 and the DigRF Version 3 specifications have IQ data that is
interspersed with other data that the VSA doesn’t need. Therefore, we must use
the Signal Extractor to pull the I1Q data out from the serial data stream and format
it for the 89601A software.

The logic analyzer makes a data acquisition on the DUT. Once that information is
in sample memory, the Signal Extractor pulls out the | and Q data and reformats
it in whatever way we have defined. The extraction algorithms define what data
to extract and how to label the data it extracts. For instance, in our example, the
input signal is “RxTxData”(see Figure 8) Once we've extracted the data with the
algorithm, there are two new signals (or signal buses in logic terms) labeled “My
bus I” and “My bus Q.” Depending on how the algorithm is defined, we could
have a myriad of various signals to look at. The extraction algorithm is based upon
a series of XML ASCIl commands which are defined in a single algorithm file.
You are free to choose your extraction algorithm or to customize the extraction
algorithm to meet your needs. All algorithms are written in XML.

Scale ‘ 100nsidv B 20e [a2 Delay 512.5ns Blw|ne[T[.
[[T [
>

-87.5ns. 125ns 1125 ns 2125ns 3125 ns 4125 ns
R R SR R MR A MO i A

BusiSignal

RxTxData

10 data /

extracted and

0s : :
AT IR (RN R R AR (NIRRT RN

reformatted
in parallel
Figure 8. Original data, prior to using
Signal Extractor
Scale Bane[srp| Delay | 460ns Bl[nc[T[2nm
BussSignal Simple Trigger . .an‘"“ I B e e
[IRxTxEnable : :
[RsTxData
) B- Mybus| i ; 0010
This OUtpUt '_) My bus Q ! i : ; 1101 0001 1110 1000
comes dirECtly Time I:Sfl\l\\\\l\lHHE\HHHHIIHHiHHIHHIIHHH]H]IHHIHHIHHHIH
from the Signal i i ‘
Extractor

Figure 9. Signal Extractor has added two new signals, My bus | and
My bus Q

13

The B4602A Slgnal The example algorithm we will use from the Signal Extractor is the “DigRF 1.12
Trigger Qualified” algorithm. This algorithm specifies the extraction to happen at a

Extractor Tool trigger point which the user sets to start at the first bit of our 96-bit frame (DigRF
sample). The algorithm specifies the bits to extract once the trigger is seen by the
Understanding the algorithm logic analyzer.

To make things a little more obvious, we'll go step by step through the algorithm
we will use on our DigRF 1.12 example.

This particular algorithm is built in to Signal Extractor. Its called
“DigRF_Trig_Qual.” The title refers to the fact that it's meant to execute with
a simple trigger. In our case, that trigger is the RxTxEnable signal (see Figure 6).

Note that ours is not a true RxTxEnable signal, but one we created to make it
possible to use a simple trigger. A true DigRF 1.12 RxTxEnable signal would most
likely stay in a high state for the transmission of an entire DigRF sample.

Figure 10 is the “DigRF 1.12 Trigger Qualified” algorithm as we would see it if we
were to double click its title in its folder.

- <ExtractorGrammar AlgorithmDescription="DigRF 1.12 Trigger Qualified">
<Comment Yalue="DigRF 1.12 Trigger Qualified approach This version extracts I and Q values from
the specified serial input. It depends upon the user to set up a trigger so that the starting
sample is the first bit of the 96-bit frame. The user can use the logic analyzer trigger to specify
this. In addition, the user should qualify the storage of the analyzer so that only when the
RxTxEnable is true is data being stored. Finally, the user should also specify the starting
sample in the signal extractor to be sample 0. Define a label that contains RxTxData (bit-0)." />
- <ExtractorLabels>
<ExtractorLabsl Name="My bus I" width="16" DefaultBase="Hex" ¥SAOutput="T"
YSaCompressionFactor="-96" />
<ExtractorLabel Name="My bus Q" Width="16" DefaultBase="Hex" VSAOutput="T"
VSACompressionFactor="-96" />
«</ExtractorLabels>
- <ExtractorSequences>
- <ExtractorSequence>
- <ExtractorPatterns>
<ExtractorPattern Value="bX" Width="1" Enabled="T" />
</ExtractorPatterns>
- <ExtractorCmds>
<ExtractorCmd Cmd="LoadRange" BitStart="0" BitEnd="15" />
<ExtractorCmd Cmd="WriteLabelTime" Name="My bus I" BitTime="15" />
«<ExtractorCmd Cmd="LoadRange" BitStart="16" BitEnd="31" />
<ExtractorCmd Cmd="WriteLabel" Name="My bus Q" />
<ExtractorCmd Cmd="GoTa" Bit="95" />
<ExtractorCmd Cmd="JumpDone" />
</ExtractorCmds>
</ExtractorSequence>
</ExtractorSequences>
</ExtractorGrammarz

Figure 10. Signal Extractor “DigRF 1.12 Trigger Qualified” algorithm

14

The B4602A Signal
Extractor Tool

Understanding the algorithm
(continued)

The XML code may look a little daunting to a non-programmer, but it's fairly easy
to follow. Let's break it up a bit:

Part 1: Extractor Labels

- <ExtractorGrammar AlgorithmDescription="DigRF 1.12 Trigger Qualified">
<Comment Yalue="DigRF 1.12 Trigger Qualified approach This version extracts I and Q values from
the specified serial input. It depends upon the user to set up a trigger so that the starting
sample is the first bit of the 96-bit frame. The user can use the logic analyzer trigger to specify
this. In addition, the user should qualify the storage of the analyzer so that only when the
RxTxEnable is true is data being stored. Finally, the user should also specify the starting
sample in the signal extractor to be sample 0. Define a label that contains RxTxData (bit-0)." />
- <ExtractorLabels>
«<ExtractorLabel &
YSaCompression -
«<ExtractorLabel Name="My bus Q" Width="16" DefaultBase="Hex" ¥SaOutput="T"
YSaCompressionFactor="-96" />
</ExtractorLabels:

e="My bus I" Width="16" DefaultBase="Hjex" VSaOutput="T"
_i_ggt

Figure 11. Part 1 of the Signal Extractor algorithm “DigRF 1.12 Trigger Qualified”

The ExtractorLabels element contains output bus/signal and bus/signal folder
definitions. Note that the “parent” (as the module name is often called) is
ExtractorLabels and the elements listed under this are the “children.” In other
words, the children are subordinate to the parent (see Figure 12).

15

The B4602A Signal
Extractor Tool

Understanding the algorithm
(continued)

16

The following table from the Signal Extractor Help files shows the different
input/output signal definitions associated with the “ExtractorLabels” children.

Table 1. 10 signal definitions for ExtractorLabels

Name

Description

DefaultBase

Binary, hex, octal, decimal, signed decimal

In this algorithm, we've used “Hex.”

Name

‘string’ — Text name of output bus/signal to display

Our bus/label names are “My bus I” and “My bus Q.” We can
see this in Figure 11.

VSACompressionFactor

‘number’ — Optional value used to tell the Agilent 89601A vector
signal analysis software about the serial compression or
expansion that is occurring between the input data to the output
data. A value of —16 implies that for every 16 input states the
output bus/signal has 1 state. A value of +4 implies that for
every 1 input state we are generating 4 output states.

In our case, we already know that our signal has 16 bits of |,

16 bits of Q (don't forget the order!) 64 bits of zero padding, for a
total of 96 bits. There is a negative sign in front of the value
because we are kind of compressing the data. The
VSACompressionFactor is —96 in this algorithm.

VSAOQutput ‘F" — The bus/signal cannot be used with the Agilent 89601A
vector signal analysis software.
‘T" — The bus/signal can be used with the Agilent 89601A
vector signal analysis software.
Of course for our purposes, we do want to use it with the
89601A software!

Width ‘number’ — Width of the output bus/signal in channels

(1to 128)

We are telling it to make the bus width 16 bits, meaning it will
be a parallel bus 16 bits wide. If we wished to output serial data,
then the bus width would be 1 bit wide.

The B4602A Signal
Extractor Tool

Understanding the algorithm
(continued)

Part 2: Creating the sequence of events
Here is where we really create the algorithm. Before coding the XML, it's wise to
create a flow chart for the algorithm.

XML and Signal Extractor have certain conventions. First we must define the
ExtractorSequences, which tells the Signal Extractor to expect one or more
ExtractorSequence followed by a series of commands (ExtractorCmds) that will
define the exact bits to extract and tell the Signal Extractor where to put them.

Parent
= <Extract0rsequences> /

- <ExtractorSequence’ - Child

- «ExtractorPatterns>
<ExtractorPattern Yalue="bX" Width="1" Enabled="T" />
</ExtractorPatterns>
- <ExtractorCmds>
<ExtractorCmd Cmd="LoadRange" BitStart="0" BitEnd="15" />
<ExtractorCrmd Cmd="WriteLabelTime" Name="My bus I" BitTime="15" /=
<ExtractorCmd Cmd="LoadRange" BitStart="16" BitEnd="31" />
<ExtractorCmd Cmd="WriteLabel" Name="My bus Q" />
<ExtractorCmd Cmd="GoTo" Bit="95" />
<ExtractorCmd Cmd="JumpDone" />
</ExtractorCmds>
«/ExtractorSequence:
</ExtractorSequences>

Figure 12. Part 2 of the Signal Extractor algorithm “DigRF 1.12 Trigger Qualified”

ExtractorSequences is the parent here.

Within the ExtractorSequences parents, we define a similar label,
ExtractorSequence. We must do this for each and every separate sequence we
wish the Signal Extractor to follow.

17

The B4602A Signal
Extractor Tool

Understanding the algorithm
(continued)

18

As XML and Signal Extractor conventions dictate, we must also define an
ExtractorPatterns label. This label tells the logic analyzer what pin mapping to
expect from the logic analyzer probe.

This table from the Signal Extractor help files explains elements associated with
the ExtractorPatterns label.

Table 2. Elements associated with the extractor patterns

Name Description

Enabled ‘F" — Indicates this pattern is initially disabled
‘T" — Indicates this pattern is initially enabled

We're generally going to have this set to “T.”

Value ‘binary_or_hex_number’ — Binary or hex pattern to search for
first. Use a leading ‘b’ or ‘h” and X’ for don’t care on some bits.

In our algorithm, weve set it to Binary as the leading bit and
don'’t care (X) for anything else — “bX.”

Width ‘number’ — Width of the pattern that you are looking for
(1to 128)

Now we are referring to the actual serial DigRF 1.12 data
stream, which is, of course, “1” bit wide.

The B4602A S|gna| Part 3: Extractor commands

Extractor Tool
- <ExtractorCmds:>
<ExtractorCmd Cmd="LoadRange" BitStart="0" BitEnd="15" />
- H <ExtractorCmd Crmd="WriteLabelTime" Name="My bus I" BitTime="15" />
UnderSta“dlng the algorlthm <ExtractorCmd Cmd="LoadRange" BitStart="16" BitEnd="31" />
(continued) <ExtractorCmd Cmd="WriteLabel" Name="My bus Q" />

<ExtractorCmd Cmd="GoTo" Bit="95" />
<ExtractorCmd Cmd="JumpDone" />

Figure 13. Part 3 of the Signal Extractor algorithm “DigRF 1.12 Trigger Qualified”

This is where we tell the Signal Extractor exactly what data to pull and where to
put it. The ExtractorCmd element listing in the Signal Extractor help files lists all
the possibilities. There are far too many to list here!

The term LoadRange is used to tell the Signal Extractor to grab a range of bit
values starting at bit 0 (BitStart="0") and ending at bit 15 (BitEnd="15"). Note
that we could, if we wish, tell it to load a single bit (LoadOne) or a specific bit
(‘Load’ Bit="0") — see the Signal Extractor help files for more information.

“WriteLabelTime” writes the values extracted in the first line to the specified
bus/signal (Name="string" or “My bus I” in our case) and then copies the time
associated with each bit.

We repeat both commands for the Q values we want to extract.

The next line tells the Signal Extractor to jump to hit 95, ignoring the 64 bits of
padding. It's important to remember that there is such a thing as a bit “0”and this
is where the logic analyzer starts counting. Thus, bit 96 will start the entire pattern
over again.

Specifically, “Jumpdone” tells the Signal Extractor tool to jump to the end of the

command section and return to the pattern matching (ExtractorPatterns) section
of the algorithm.

19

The B4602A Signal
Extractor Tool

Understanding the algorithm
(continued)

20

Part 4: Modifying an existing algorithm

Modification is quite simple. Open the algorithm in Notepad or WordPad (make
sure you tell it to open “All files,” as neither tool will recognize the XML file
extension). Before proceeding any further, save it with another title. All values are
text strings in XML. In a line of code, for example:

<ExtractorLabel Name="My bus I" Width="16" DefaultBase="Hex" VSAQutput="T"
VSACompressionFactor="-96"/>

we could change the ExtractorLabel name to ‘My serial data” or some other name.
We must adhere to XML and Signal Extractor conventions and elements, but any
text string can be modified.

We might change these lines of code:

<ExtractorLabel Name="My bus I" Width="16" DefaultBase="Hex" VSAQutput="T"
VSACompressionFactor="-96"/>
<ExtractorLabel Name="My bus Q" Width="16" DefaultBase="Hex’ VSAOQutput="T"
VSACompressionFactor="-96"/>

to this:

<ExtractorLabel Name="My parallel bus I’ Width="32" DefaultBase="Binary’
VSAOutput="T" VSACompressionFactor="-128"/>

<ExtractorLabel Name="My bus Q" Width="32" DefaultBase="Binary’
VSAOutput="T" VSACompressionFactor="-128"/>

if we had a serial input bus that had 32 bits of I, followed by 32 bits of Q data

and 64 bits of padding, and we wanted the Signal Extractor buses to show up in
binary format (note that the format can be changed in the logic analyzer waveform
screen). Keep in mind that if you change the name in one part of the algorithm,
you must change it in all places it’s referred to.

The B4602A Signal
Extractor Tool

Understanding the algorithm
(continued)

Once you've made the changes you want to the algorithm, save as type “All files”

with the .xml extension left on. The new algorithm will look like this:

Don’t forget to update

the documentation!
igger Qualified">

- <ExtractorGrammar AlgorithmDescription="DigRF 1.12 Ti
<Comment Yalue="DigRF 1.12 Trigger Qualified a

starting sample is the first bit

specify the starting sample in the sugnal extractar to be sample 0. Defme a label that
contains RxTxData (bit-0)." /.

vSACompressi
</ExtractorLabels:>

- <ExtractorSequences>
- <ExtractorSequence>

tor="-128" />

- <ExtractorPatterns>
<ExtractorPattern Value="bX" Width="1" Enabled="T" />
</ExtractorPatterns>
- <ExtractorCmds>
<ExtractorCi ="LoadRange" BitStart="0" BitEnd="31" />

<Extractor md="GoTo" Bit="128" />
<ExtractorCmd Cma=
</ExtractorCmdss>
</ExtractorSequence>
</ExtractorSequences>
</ExtractorGrammar>

Figure 14. Modified algorithm

The logic analyzer's waveform view will look like this:

The two
buses can be

Bus/Signal
expanded to (IRaTEnable
shovy the full [JRexData
32 bits for '

S

each.

My parallel bus @

Figure 15. Bus name modifications

ffoach This version extracts I and Q values
from the specified serial input. It depesdsubon the user to set up a trigger so that the

21

i i Once both the logic analyzer software and 89601A VSA software are installed, we
ettmg up the ogic
. . need to get them speaking to each other. Go to Start > Programs > Agilent 89600
Analyzer with s'Q“aI VSA > Logic Analyzer > 10 Connections.

Extractor and the
89601A Software

Getting started i Agilent 89600 I/0 Connections o] x|
Fle Edt IfO Configuration Help
.@ Refresh Al Y Undo a Properties ._3. Add Instrument 9 Delete
Instrument I/O on this PC
=24

= ML, LAN [TCFIP)
i_g Aglent Logic &nalyzer [TCPIP:: Localhost)

- LAN Instrument - TCPIP:Lacalhost - |I:I|_2£E

Change configurable properties of this LAM device [Agilent Logic Analyzer)

& Hostname: |Locahost

Port:

 IP address: | a

Test Connection |

o Instrument is connected

¥ Check for an instrumert at this TCPAP address

o | Cancel Heb |

Figure 16. Logic analyser/VSA communication setup

Right click LAN(TCPIP) and then select Agilent Logic Analyzer, and click OK.

In the Hostname box, type “Localhost,” and click Test Connection. You should get
a green check mark as shown in Figure 16. The VSA and logic analyzer software
are now connected. The VSA uses the VISA Assistant in the 10 Libraries Suite to
“speak” with the logic analyzer software. Thus we need to give the logic analyzer
a “name” for the VSA to speak to.

22

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer

Setting up the logic analyzer

When we launch the logic analyzer software, we will need to set it up for a
capture. The first thing we need to do is set up our Overview window. The next
thing we'll do is setup bus, thresholds, and signals. Ensure that the logic analyzer
cables are connected to the probe properly, and that the probe is connected to
the DUT. Supply power to the DUT and power on the logic analyzer. The outer end
connectors on logic analyzer cables are referred to as “pods” and are numbered
Pod 1, Pod 2, Pod 3 etc. The number of pods for each logic analyzer module (card)
depends on the card itself. Generally there are two. For our DigRF 1.12 Signal, we
will need only one Pod. Pods generally contain 40 pins, meaning there are 38 data
channels and two clock channels per pod. The probe being used must have the
same number of channels. One side attaches to the logic analyzer pod, and the
other portion (the probe “tip”) attaches to the DUT.

The Overview window and the Signal Extractor tool

The Overview window is typically the first window that opens up. The default
setting has one graphical user interface (GUI) for the default logic analyzer (the
name of the logic analyzer module will be whatever hardware the software finds),
and there will be a list and waveform window attached to that module.

"I fle Edt Yiew Setup Iools Markers RunfStop Qverview Window Help *% He Edt View Setup |Tools Markers RunfStop Overview Window Help
DEH&E A%Rd HTH (AR | (=4 DS | o 5 DNewlverse Assenty ’
| 4B New Bus Analysis »
Fillto M2 = illto M2 = — 5 Hew Fiker/Colorize, .,
- | Hew Packet Decoder..., -
- odul 58] e =
ol Ll aduies e Signal Extractor. .,
C-I BE Usting1 | o0y Logic
Analyzer-1 L_ - Analyzer-1 #4
]| o | =] 2 sl
FlElafml |t | F] Show SLEEIT oterna applestions ’
Macro »

\ Bl waveform-1 | Bun Macro »
1 ¥
¥ Show ¥ Show

2 oveviev [gl B Wawlml] % ovven B gl JE Wedom]

RNV

Quick switch
between views

Figure 18. Adding a Signal

Figure 17. Default configuration

23

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

24

Extractor tool

To hook up the Signal Extractor tool, go to Tools > New Signal Extractor and the
software will automatically place a Signal Extractor tool into the path between the
logic analyzer module and the list and waveform windows.

To call up the algorithm, click Properties of the Signal Extractor GUI, then select
Load Algorithm. This gives us an option to browse the Signal Extractor files and
pick our algorithm. The one we're using here is the same we looked at in the

previous section.

H*:EE\E Edit View Zetup Tools Markers Run/Stop Qverview Window Help

D&t (wTraals||lzas| |«
H [Hllto M2 = -

Modules | Tools | Windows
Wwyiooe /Al signal Y, ‘5 Usting1 |
Anabzert L ./ Edsclort A
‘ || A T " | Propeties |/ ‘ ¢| show |
x| [waverom-1 |

~Input Bus/Sianal y J

: o ! . o] show |

™ Stark Sample 0 m

0 m

I End Sample 100

Extractor Algorithm

File Name: DigRF_1_12_Trig_Qual2.xm|

ERER Click here to load

Algorithm: DigRF 1.12 Trigger Qualified

P 4_/ the algorithm.

oK concel | Hep |

% Ovewew JE egl B wevomd]

Figure 19. Loading the algorithm

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

Pod 1 contains both
clock and data.

=loix]

oy o] @@
T 1] R Y1 T R—

Threshold: TTL | Thieshold: TTL

T RAXDala__ Fodai] 1 v

Right click here 7
to change the

name or add a

bus/signal.
/ = wo_|
You can also
click here to add Figure 20. Setting up the buses
a bus/signal.

Setting up the bus, thresholds and signals

To set up the bus, thresholds, and signals go to Setup > Timing/ State (see
Figure 21). On the sampling tab, select State, and set the trigger to 99% post
store. We'd like a little bit of pre-trigger information but we want the bulk of the
information after the trigger.

J!'\'-I File Edit Wiew getupr Tools Markers RunfStop Owerview Window Help

TSI s =k =]
! v = | 2 =
‘ LT T |y 1658024 »

Add External Scope, 22 Bus/Signal...

Module External Trigger...

St s Skew & System Trigger... 5 :
Slot, Simple Trinner...

Figure 21. Setup > Timing/State

25

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

26

Memory depth

The acquisition depth we'll leave at 1 M, as that is more than adequate for our
needs. In logic analyzer terms, that's 1 MSample of memory. We can collect

1 Mbit of data. In our case, since we know that the DigRF samples will be only
96 bits long, we have plenty of memory.

Under Sampling Options (as shown in Figure 22) there will be a couple of choices,
depending on the logic analyzer you're using. We leave our sample speed at

200 MHz. State mode sample speed matches your DUT's clock rate, up to certain
rates. Rule of thumb suggests that we pick the lowest sample rate that will meet
our needs. We could switch it to a higher rate, but there’s simply no need to and
there are other tradeoffs for higher sampling capability. We leave the clock as
master in this case because we're only using one logic analyzer module (several
modules are needed for high channel count on parallel bus signals and the master
clock can control the timing for all).

e
Buses/Signals Samping |
s g % Postore ™ Erae
o)
oo [Z5w T To use eye finder,
: : ™ click this button.

Clock Mode: [Master ~] T Advanced Clocking

Figure 22. Sampling setup window

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

Thresholds and sample position

Once the logic analyzer is correctly hooked up to the DUT and powered on, activity
on each active pod will show up in the bus/signal display under the correct pod.
When hooking up the logic analyzer, there will be specific voltage thresholds we
want it to look at (meaning where we will sample on the rising or falling edge of
the bit). We also want to optimize the position on the bit where the logic analyzer
takes the sample. Ideally, we want the sample taken directly in the middle of the
bit. There is a tool built into the logic analyzer specifically for this called “eye
finder” (Figure 23). In state mode, the logic analyzer looks at signals from the
device under test, figures out the threshold voltage that results in the widest
possible data valid window, then figures out the location of the data valid window
in relation to the sampling clock and automatically sets the threshold voltage

and sampling position. The term “data valid” simply means when the data is
either high or low, not transitioning (see Figure 24). To use eye finder, we select
Threshold and Sample Position. For our DigRF 1.12 signal, the VIH is 0.7 (see
Appendix A under Voltage Levels) so we will want to set our threshold to about
0.5 volts to ensure that the logic analyzer properly identifies a logic one. The
Threshold and Sample Position tool should also see this and set it accordingly.
Alternately, we can set the threshold values manually under the Buses/Signals
tab (Figure 25).

4| Eye finder
Legend
I Current Sample Posttion (ESample) A Suggested Sample Position Signal Acti Display ¥| Advanced... ShOWS the
= Current Threshold (vThresh) 4 Suggested Threshold Signal Activ "'2 Ehannete selciad tor Bin correct
| Buses/Sinals to Run 5 4 3 2 4 0.1 2 3 4 5 Theshold and Sample Poskion [threshold,
¥ I ReTiData F 17 and the
s ._% e g Thresheld: User proper
vThresh= 0.50 ¢ || I
= A 0-{ tSample= D.60ns sample
U T I T — position.
v I ReTEnable | F L)
+ vt o] Threshold: User
vThresh= 0.50 ¢
- - 0- tSample= 0.41ns
T T T T T
I -
- IAutn Sample Position Setup E‘ | O Cancel Help l :

Figure 23. Eye finder

27

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

28

- H

Setup '
1
| = Hold Time ==

Time

i

1

1

1

1

1 1

D Flip Flop J - -
1 1

1 1

o L

ly, click the Threshold bar.

: : Data is stable I
<

Data is transitioning

Figure 24. Data valid

To setup thresholds manual

Buses/Signals | Samping |

Enter buses and signals and the channels they

Thieshold: User 0 V

Bus Signal llame f‘:".';ﬂf‘/@

| R(DDala Pod C2(5] 1 v
I” RiTxEnable Pod C2ff 1 L4

¥ Apply settings to al pods
- Threshold Settings

Probe; |General purpose probing ﬂ

 standard |17 (1.50v) >

& User Defined

Cox] o |

1514 1312/11 10/9 8|7 6 5§ 4 3 2 1 0151413 12/11 10 9 8

import Netlist... | System Summary... |

ok | Cencal | Hep |

7

Figure 25. Manual threshold setup window

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

Trigger setup
Our example uses a very simple trigger in the form of an event output. On a
DigRF 1.12 signal you will generally want to use the RxTxEnable signal.

We access the trigger menu either by going to the Setup menu in the tool bar, or
going back to the Module GUI (Figure 26) in the Overview window and selecting
the Trigger button. As we can see in Figure 27, we've put in very simple trigger
that tells the logic analyzer to fill memory as soon as it sees the RxTxEnable signal
go high. Since we've put in 99% post store, we’ll capture 1% prior to the actual
trigger event so we can see a few events leading up to the trigger point.

My 168024

v IE:" }ﬁ Trsg*k— Trigger button

Figure 26. Logic analyzer model GUI

Advanced Trigger for My 168024 8 [
Trigger Functions Trigger Sequence

-

Default Storage
Overridden by store actions in individual trigger steps:

Patternn
times % store % | [anything =
Step1 ¥ advanced IffThen

N consecutive il I ll BusfSignal ~ RxTxEnable I High -
samples with
Patternl Joccws =] [1 B[-[+] [eventualy =]

Then ﬂ [Trigger and fil memary =]

% | with ¥ | [oefout storage ~

[" [patterns

Patternl
followed by
Patternz

Patternl
immediately

followed by
Pattern2

store... | Recal... e | ok | cancel | heb é

Click here to set up
a simple trigger.

Figure 27. Trigger setup

Once we're ready, we can run the logic analyzer. On the tool bar, there
is a green arrow, and we simply click on that to run the instrument. JJ

29

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

30

Logic analyzer results

We can easily view the data and the waveforms by switching between windows.
In our example, remember we have a 96-bit sample, where there are 16 bits of I,
followed by 16 bits of Q and 64 bits of padded zeros.

Viewing the data

We can view the data in List view or Waveform view. In fact we can view it before
and after we use the Signal Extractor. Right clicking the arrow between the List
view and the Signal Extractor GUIs in the overview window allows us to add a
List view window (List view must be dedicated to serial or parallel data, not both.
Since the newly extracted data is parallel, we'll need two List view windows).

Modules [Tools \ Windows
SlotA
o My 168014 [il pigrF 112 l% List1 |
e .,9{ Signal Extractor . .| Pre-GF !‘)aia
v Eé & E x| o I \ Delete Connection
= i New Tool 4
MNew Window » Eﬂ Compare
o TR
4| Bdracted Data Packet Viewer
| ¥ Show =] source
——)
Y vbaview 4
P ITTETTE—— aveform
Bl waveform B v

All Data

xl Show |
e —

Figure 28. Adding a window

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Logic analyzer (continued)

My 16802A:Sample Number RxTxEnable Time

Start of the
| data

Start of the
Q data

Start of
the zero
padding

RxTxData | RxTxEnable Time

Start of the | data for
the next sample.

Figure 29. List view of pre-extracted data (serial). We can scroll down and count the bits
using markers.

31

Setting up the Logic ’ Time My bus | My bus G
Analyzer with Signal
Extractor and the . .
89601A Software : 001 o100 0101 1001

0110 D101 100

1110 1010 1001 O

Logic analyzer (continued)

0110
0111 §

These values correlate directly
with the pre-extracted 1Q data.

Figure 30. List view of DigRF 1.12 data after signal extraction

Signal extraction
began here.

Figure 31. Waveform view of data

Bl

Figure 32. Waveform view in chart mode. In this mode, all the symbols are displayed as
if they are in the time domain.

32

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Vector signal analyzer

Setting up the vector signal analyzer

Once we start up the VSA software, we must first set up the digital input
properties. We access this from the Input menu on the toolbar, as shown in
Figure 33. Figure 34 explains how to set up these properties.

bzl Agilent 89600 Yector Signal Analyzer

File Edit Control Source |Input TestSetup MeasSetup Display Trace Markers Utilities Help

P Il | &

(ARURG

Channels | B ko iIM|| &
Range...
Coupling...

Trigger...

Data From

Recording...

Figure 33. Drop-down menu for digital input properties

Set the GSM

sample rate here.

This sample rate
must be correct
or the signal will
not demodulate
properly. The
VSA sets its
span according
to the sample
rate set here.
GSM is 4X
oversampled, so
our sample rate

is 1.0833 MSa/S.

The Parts
pull-down
menu must be
set to 1&Q.

Ei Input Properties |

1.083 MSa/Sed

/DHZ

Bus Name:
I: [My bus |

Composition
Module Name:

lSignal Extractor-1 :_l
Parts:
[lea

Lef L«

Sign:
| Two's Complement L]

e
o

Swap Scales
Help

Figure 34. Digital Input Properties dialog box

Close " Keep Open

The module
name is

the Signal
Extractor! The
VSA takes
the 1Q data
only from

the Signal
Extractor
after the 1Q
data has been
reformatted.

All the names
will match the
logic analyzer
names.

33

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Vector signal analyzer (continued)

34

The Digital Input Properties dialog box is the most important setup window in the
VSA software. This is where we tell the VSA what to expect. We set the sample
rate, module name, bus names, and parts label. We can also chose the data

types — either two's complement or offset binary — and we can choose to swap
the scales. This example leaves both these at the default. Note that the center
frequency is set to 0 Hz. This is because we're using 1Q signals. In some cases, a
digital radio may have a digital LO and mixer. If complex data is taken on the other
side of the mixer, then it has a non-zero center frequency. We would then type
this center frequency in the Digital Input Properties dialog box so the displays are
properly labeled.

Next, it's always a good idea to check the measurement setup properties in the
MeasSetup Properties dialog box. We can check the span, look at the spectrum to
make sure it makes sense (the entire signal should be displayed. If it looks cut-off,
the sample rate is likely to be incorrect).

i Agilent 89600 Vector Signal Anal
Fle Ede Conbrod Source [npat Testfs Oeplyy Irace Malers (hibes Help

»ile [@OOOODO YT~ |[xoe i | E

Fraquency | Resiw| Tees| avwenge |
Spar
B4E DA3TS kH:

)bz
¥ Skow Conted/Span - =

Froquency Stegp

Froe Sgec Arasrer
N Aulo Faequancy Step

[~ Signal Tesek [Chacrel 1

Tme Diats

Figure 35. MeasSetup Properties dialog box

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Vector signal analyzer (continued)

Now we are ready to set up the demodulation. We first open the Demod Dialog

by pulling down the MeasSetup menu and selecting Demodulation > Digital (see

Figure 36).

i Agdent B3600 Vect or Signal Analyzer I
fle [t Cortrol Zguce [Pt TedtSebhu MesSetup [Deplyy [race Marbers (Rltes [eip
@ AN ENOR NS Frequency (ands =l n =

Freguency. ..

Tiea...

Bverage. ..

[T Ll v Dernod Cff

faring Deenced

Brosdbuard "W sless Acosss
Pubilc Saf ety

Utr - Widdshand

Figure 36. Demod drop-down window

35

setting up the Logic Once we've selected that, we need to set up the demod properties.

Analyzer with Signal
Extractor and the
89601A Software

et Tedletg polay Irace Pakers (Rites el
1O EE) sacwre k3o |l M1 .

Vector signal analyzer (continued)

=101 x|

Fomst IFinl Seamth | Comgmrise| Advarced|

Einsecs Netmoriing P SRR, MORILE

Eonrad
= . Cptal Video LA
15K T
l_" - 1‘:"' ! Cither 3 EoGE
Lpnbol Fisie T GEM
(270 SR ke [128 S gty DT

EDC

P (FR5)
W-Coe

Figure 37. Selecting the modulation format

Our DigRF 1.12 example uses the GSM format. When we select this, the VSA
software automatically sets up the correct parameters such as symbol rate
(270.8333 kHz), modulation format (MSK Type 1) and filtering.

36

Setting up the Logic
Analyzer with Signal

Extractor and the
89601A Software

Vector signal analyzer (continued)

Once the modulation parameters are set up, we can customize the displays. Let's
start by putting up a set of 6 displays. This is done by simply pulling down the Grid
menu.

Agilent 89600 Yector Signal Analyzer

Fl= Edt Control Squrce Input TestSshup MessSetup Display Trace Markers (Ritles Help

r e AEOOEOE®sHax x| Ikie M |E

Simply pull the menu down
and select the display grid
you want to use.

Figure 38. Changing the number of displays

We can then modify the contents of the displays. There are quite a few choices! In
our example, we'll take a look at the eye diagrams for the | and Q. On traces E and
F, there is likely no display at default. So we right click the title and select Edit.

Ch Frequency Response
Maiker Correction

No Data EqImpulse Respanse
Error Vector Spec

Error Vector Time

10 Mag Errar

10 Meas Spec

1Q Phase Enor

10 Ref Spec

10 Ref Tune

Inst En Vect Spec
Inst Q] Meas Spec
Inzt 10 Ref Spec
Inst Spectum :J

Figure 39. Customizing display contents: Figure 40. Selecting the display type for
X-axis the X-axis

37

Setting up the Logic We have several choices. Since we'd like to look at the eyes, we're going to select
1Q Meas Time for the X-axis and I-eye for the Y-axis.

Analyzer with Signal
Extractor and the
89601A Software

Vector signal analyzer (continued)

Copy Text

Urwarap Phase
Default 2

Canstelation

Trclia Eve
| Group Delay
e | Loag Mag [lin)

NO DATA

Figure 41. Changing the Y-axis Figure 42. Selecting the format

We will do the same thing with display F, but this time we select the Q-Eye.

Figure 43. Full 2x3 set of displays

38

Setting up the Logic
Analyzer with Signal
Extractor and the
89601A Software

Vector signal analyzer (continued)

Vector signal analysis results

We've already seen the eye diagrams but let's examine a couple of the other
displays we can see with the VSA software and take a look at what's presented.

Sync Search

One very nice feature is the Sync Search. We can take a pattern of data and tell
the VSA to find it. In this case, the 01111100 represents the first four symbols

of the DigRF data in the first 96-bit sample. We might like to use this feature to
ensure that the BBIC is sending the appropriate data, for example. There are also
several GSM and EDGE training sequence preset patterns to choose from.

(GSM)TSCO
— m— (GSMITSCL
fal Digital Demodulation Prop (GIMYTSC2
- | (GSM)TSC3
Fotmatl Filter Search Compensatel Adv camTsce
Search Length: (GEM)TSCS
mdeq 381 Bmses (GSM)TSCE
7 mdegpk at sym 119 238125 mSec (GSM)TSCT
Freq Enr mHz
IO Offset d8 I Pulse Search {EDGE)TSCO
(EDGE)TSC1
D_L}au:l En - rndeg [¥ Sync Search (EDGEVTSC2
Gain Imb -0, dB
e s | Search Pattern: (EDGE)TSC3
0 EEREREDR 01110100 11101111 1100 [_ EDGE)TSC4
32 10001000 10010010 01101000 1111 TIRRRITE (EDeED
64 0 f x0zaflo0an earch Dffset: ez
11111100 01101000 11111110 1101 (EDGE)TSCE
11101010 01010101 11001110 1111 EMEIEERIEEE GalEs e
160 10111110 00000010 10011100 0101
(APSK 16)SOF
(APSK 32)5OF
Close [Keep Open i

Figure 44. Sync Search helps you find specific data patterns.

39

Setting up the Logic Syms/Errs summary table and more
The Syms/Errs table is a very handy feature that shows us overall modulation

Analyzer with S|g“a| quality. It will also show us peak values for metrics such as EVM, magnitude and
Extractor and the phase errors. Marker coupling allows us to view a troublesome symbol in other

domains, too, such as 1Q phase and magnitude error.
89601A Software

Vector signal analyzer (continued)

D: Ch1 MSK1 Syms/Enrs

m%ims
sym 119
m%ims
sym 141
mdeg
sym 119
Freq En mHz
10 Offset E dB

Quad Enr -42.473 mdeg
Gain Imb 0.015 dB

0 WEREENEET 01110100 11101111 11001011
32 10001000 10010010 0110108811110110
64 11010100 10001000 01110{1@ H0000O10
96 11111100 01101000 11111148411010001
11101010 01010101 11001110R11110010
10111110 00000010 10011100 W1010110

Figure 45. Syms/Err table)
Marker coupling lets us

look at a single symbols
in different domains.

Start: 0 sym

Start: 0 sym Stop: 147 sym

Figure 46. 1Q phase error display Figure 47. 10 magnitude error display

40

Summary

The transition of interfaces from analog to digital is a trend that is going to
continue. The availability of the proper tools for test and measurement of such
changing interfaces paves the road for a smooth transition. A seemingly complex
task has been shown to be fairly simple using standard test and measurement
equipment with the new Signal Extractor tool.

4

Appendix A: DigRF 1.12
Digital Physical Layer
Overview

42

The DigRF 1.12 standard defines the digital interface between BBIC and RFIC
for GSM, GPRS and Edge. Its purpose is to allow open communication between
BBIC and RFIC regardless of the vendor of either, while reducing pin count and
maintaining efficiency through the use of standardized digital (versus analog)
interfaces.

The standard does not address the physical layer of GPRS. The physical layer is as

defined in

[11GSM 05.10, Radio Subsystem Synchronization (section 6.4 in version 7.1.0, or
equivalent in later versions)

[2] GSM 05.04, Modulation (section 3.2 in version 8.0.0, or equivalent in later
versions)

The standard itself does not define the TDMA protocol layer. These layers will be
dependent on the requirements as stated in the protocol layer specifications for
the same telecommunications standards.

In particular, the DigRF 1.12 standard addresses the 2.5G GSM (slot classes 1
through 12) on the logic, electrical and timing level. A separate standard, DigRF

Version 3, will cover the 3G implementation of digital interfaces.

The latest version of the DigRF 1.12 specification can be found at www.digrf.com.

Direct conversion and near-zero IF

The DigRF 1.12 interface was designed specifically to support both direct
conversion and near-zero IF radios. These terms may be familiar to RF engineers,
but are not likely to be familiar to digital engineers.

The term “direct conversion” refers to a radio that uses |Q signals for modulation
instead of the older analog modulation technology, resulting in an initial
intermediate frequency at 0 Hz. “Direct conversion” is also called “ZerolF” or

“ZIE.” Figure 52 shows the spectrum of a QAM modulated signal at 0 Hz center
frequency.

4 Ch1 Spectum FMS:43 Flange: 10 dBm
10,

&
Certer.0 Hz Span 78125 WHz
REW: 100kHz TimeLen: 36.2 uec

Figure 48. Spectrum of an 1Q signal (QAM16)

Appendix A: DigRF 1.12
Digital Physical Layer
Overview

The term “near-zero IF” or “NZIF” refers to a circuit where the IQ signals have
been mixed up from DC to a low intermediate frequency. Typically this allows for
gain to be distributed between the DC and IF stages, reducing the probability of
DC offset, and requiring fewer ADCs. DC offset occurs when there is imbalance
between the phase of the | and Q signals, in which causes a DC component that
distorts the signal and limits ADC dynamic range.

Nomenclature conventions within the DigRF 1.12 specification

It is a good idea to separate out some of the nomenclature used in the DigRF 1.12
specification and make note of where these terms are used. See the discussion

of “symbol” versus “sample” on page 11. Symbols sent from the BBIC to the RFIC
are not multiplexed, and are sent in the order needed for transmission over the air.

“Transmit” versus “receive”

It is important to note that when data is being sent from the BBIC to the RFIC, this
transfer is referred to as being transmitted. When data is sent from the RFIC to the
BBIC, this transfer is referred to as being received. The term “transmission” here
is used to refer to the passing of data between the RFIC and BBIC interface, in any
direction.

The RFIC and BBIC
RFIC: The RFIC contains the GMSK and 8PSK modulators. It may or may not
contain a data/bit buffer and it may or may not contain a digital filter. This has

been left entirely up to the designer, and the choices are all supported by the
BBIC.

BBIC: The BBIC does generally contain a data/bit buffer, and it may or may not
contain a digital filter. If it does contain a digital filter, it must also provide a filter
bypass. The digital filter typically must match the required analog filter in the RFIC.
When the digital filter is implemented in the BBIC, it is generally a programmable
filter so BBICs and RFICs from different vendors can be interchanged.

Both the BBIC and the RFIC must support, at a minimum, 16 bits per sample at

2 samples per symbol. The standard clock (SysClk) rate is 26 MHz. There is also
an optional 52-MHz mode.

43

Appendix A: DigRF 1.12
Digital Physical Layer
Overview

44

The DigRF 1.12 interface

The DigRF 1.12 interface requires 8 pins per ASIC.

RxTx Data

 J

RxTx En

Yy

CulData

Y

CtrlEn

CulCk

Strobe

SysClk

SysClk En

BBIC

Figure 49. DigRF 1.12 ASIC interfaces

The RxTx interface

The RxTx interface is serial and bi-directional, and we can see on the first pin that
the receive and transmit data must be multiplexed. The IQ samples (not symbols —
here we are just talking about individual samples that comprise a symbol) may or
may not be filtered, and come directly from in the BBIC. The SysClk (system clock)
is used for clocking the data, and the RFIC is able to control the system clock via
the SysCIkEn line. The enable signal is used to tell either the RFIC or the BBIC that
it is ready to transmit.

Control

The control interface is also serial and bi-directional, and in DigRF 1.12 it is on
separate lines (In DigRF Version 3 the control data is multiplexed in with the 1Q
data on the same line.) The CtrlData is clocked using the control clock (which
originates in the BBIC), and the control enable line is set by the BBIC, which is
the master.

Strobe

The strobe is used as a time-accurate signal for over-the-air timing. It is used
instead of the SysClk for extremely accurate timing of events. The strobe is driven
by hardware within the BBIC.

Appendix A: DigRF 1.12
Digital Physical Layer
Overview

Modes of operation

There are three modes of operation discussed in the DigRF 1.12 Specification.

The two transmit modes take into account the optional existence of a data buffer
within the RFIC. Transmit Block mode is used for data transmission from BBIC to
RFIC when a buffer is present in the BBIC. Transmit Stream mode is used when
the RFIC does not contain a buffer. Receive mode is used for transmission from
RFIC to BBIC. In Transmit mode (symbols are sent from BBIC to RFIC), the symbols
are sent in bursts, and each symbol is represented by four bits in order (not
multiplexed). In Receive mode, where the bits are being sent from the RFIC to the
BBIC, the 1Q samples are multiplexed.

1. Transmit Stream mode

In Transmit Stream mode, the RFIC does not contain a buffer, so the RFIC
receives the symbols at the true symbol rate for modulation. There are four
data bits per symbol and these are transmitted from the BBIC at about

1.083 Mbps (SysClk/24). The symbol rate is equal to the bit rate/bits per
symbol and is approximately 270.833 kbps, as determined by the GSM
specification. Do not confuse the system clock rate with the symbol or bit rate.

Transmission of these bits continues until the buffer in the BBIC is emptied.
Note that the BBIC is required to transmit whole symbols only, and the RFIC
may require a pre- or post-amble in addition to the data (these pre/post-ambles
may not exceed 32 bits). RFICs are required to specify and provide a constant
group delay from the assertion of RXTXEn to the transmit chain outputs.

2. Transmit Block mode

In this case, the bits are transmitted directly at a rate of 26 MHz (versus

26/24 MHz), which is a much higher rate. However, since they will be
contained in a buffer within the RFIC prior to modulation, the output symbol
rate (over the air) will be the same 270.8333 kbps (as set by the GSM standard).
As in Stream Mode, there are 4-bit symbol bursts, but the transmission may be
discontinuous. For example, an entire slot may not be contiguous as sent from
the BBIC to the RFIC. In this case, there are requirements placed on the length
of non-transmission: the gap in transmission must last a minimum of two
system clock cycles (2/SysClk or about 760 nS). The RxTxEn signal must also
be placed in the same way as if the burst difference were quite long (meaning
that if the RXTXEn is high during transmission, it should be put low during

the gap).

The bits are sent from the BBIC to be held in the RFIC buffer for modulation.
Also, in block mode, the RFIC must be told how many symbols will be sent
from the BBIC. This information can be sent in several ways: via the control
interface, events on the strobe signal, buffer contents, counts, etc. A constant
delay between the assertion of the strobe signal and the actual transmission in
block mode is determined by the RFIC and is provided to the BBIC.

45

Appendix A: DigRF 1.12
Digital Physical Layer
Overview

46

3. Receive mode (Rx mode)

Receive Mode is used when the RFIC is receiving the bits down from the
antenna and forwarding them to the BBIC. It's a more complicated than

the first two modes, and the sample format is highly dependent on RFIC
design. RxTxData to the BBIC contains multiplexed data and there are several
possibilities for number of I, Q and padding bits per sample and the number of
samples per symbol. The BBIC must accommodate these variables, which are
set by the RFIC into the BBIC via control signals. The RFIC determines sample
order (I first or Q first).

Bits per sample:

The number of bits per | and Q sample can be set to any integer value from 1 to
24, This is done to accommodate higher oversample ratios and dynamic range
when such electronics become available.

If the RFIC contains a digital filter (it is optional), then the output of the digital
filter is typically 16 bits (this conforms to a DSP word size). However, all 16 bits
are not always significant. As we’'ve seen in the Transmit modes, there are only
4 bits per symbol, so it is not necessary to use all 16 bits output from the filter.

When the RFIC is designed/programmed, it is up to the designer to ensure that
the number of bits per sample set is appropriate to the RFIC or the data will be
meaningless.

Padding bits are used when the | and Q samples will not occupy every system
clock cycle. The number of pad bits is also set by the RFIC, and it will be in the
range of 0 to 64 bits per sample.

One suggestion in the DigRF standard is one or two samples per symbol, with
each sample containing 16 bits of I, 16 bits of Q, and 64 bits of zero padding.
At 1 sample per symbol, we would have 96 bits per symbol, and this should be
sufficient to occupy each clock cycle.

Voltage level requirements

The voltage level requirements are important because we must know what to set
the logic analyzer threshold to in order to capture the correct logic levels. Using
Table 7 in the DigRF 1.12 spec, we can see that Vil gives us a range from —0.3

to 0.3*VCC (the —0.3 V is to account for undershoot), and that ViH has a range of
from 0.7 VCC to VCC +0.3 (the +0.3 V is to account for overshoot). Thus for a logic
high, we will set our logic analyzer threshold to 0.5 V, which is below the lower
threshold for ViH. Anything lower than that will be treated as a low by the logic
analyzer.

Glossary

ASCIl American standard code for information interchange: ASCII is the binary
code for representing characters in computers.

ADC Analog-to-digital converter: A circuit that converts analog signals to digital.
ADCs typically have a resolution of many bits. For instance, a single analog
sinusoidal may be represented by 16 bits on the output of the ADC.

ASIC Application-specific integrated circuit: An IC that is designed for a specific
applications versus something like a microprocessor.

BBIC Baseband integrated circuit: An ASIC that has been designed specifically to
process baseband information. BBICs can be considered the “Brains” in chipsets
and often contain embedded microcontrollers, and the digital signal processing for
communications.

CMOS Complementary metal oxide semiconductor: A semiconductor technology
widely used in electronic components. CMOS typically uses less power than its
predecessors.

CPRI Common pubic radio interface: The Common Public Radio Interface (CPRI™)
is an industry cooperation aimed at defining a publicly available specification for
the key internal interface of radio base stations between the Radio Equipment
Control (REC) and the Radio Equipment (RE).

CtrIData Control data: Data that contains logistical information for command and
control.

CtrlEn Control enable: A signal that is used to signify the start and end of the
entire telegram in write operations and the address portion in read operations.

CtriClock Control clock: The clock that is used for timing of CtriData.

DUT Device under test

EDGE Enhanced data GSM environment: A technology that gives GSMA and
TDMA similar capacity to handle services for the third generation of mobile

telephony

8PSK 8 phase shift keying: A particular modulation format that has 8 separate
phase states. The EDGE cellular system uses 8PSK.

EGPRS Enhanced general packet radio service: Enhanced data rates for the GSM
cellular system.

EVM Error vector magnitude: A modulation quality metric widely used in
communications. EVM is the magnitude of the error vector which points from
where a symbol should lie in the constellation to where the symbol actually does
lie.

FFT Fast Fourier transform: An efficient mathematical algorithm whose purpose
is to transform sampled time waveforms into spectra.

47

Glossary

48

FPGA Field-programmable gate array: A programmable integrated circuit. Used
often in initial designs for ASICs, as it can be reprogrammed to correct errors.

GMSK Gaussian minimum shift-keying: A form of frequency shift keying used

in GSM cellular systems. Frequency shift keying uses two binary states to
represent an analog waveform at a specific frequencies (a binary one signifies one
frequency and a binary 0 a different frequency). The “G” refers to the fact that it
uses Gaussian filtering. In GMSK, the tone frequencies are separated by one half
the bit rate.

GPRS General packet radio service: A high-speed data service used by the GSM
cellular systems. GPRS enables high-speed wireless Internet and other data
communications (text messaging for example) over a GSM network.

GSM Global system for mobile communication: A standard for digital mobile
telephony, based on a time-division multiple access frequency plan.

IC Integrated circuit: A chip, or die, which has a collection of transistors and
electrical circuits built upon it. The name originated from the integration of
previously separate components.

1Q In-phase and quadrature: In a modulated signal, | is considered the “real,”

or in-phase component, and Q the “imaginary” or “quadrature” component — the
signal component that has been offset from the | signal component by 90 degrees
(thus the term quadrature).

Modulation is measured by shifting the carrier frequency fc down to “0 Hz.”

Given a signal V(t) = A(t) * Cos [2m(fc)t + 6(t)],
Where:
V(t) is some modulated signal as a function of time
A(t) describes the signal amplitude as a function of time
2m (fc)t describes the carrier frequency as a function of time
6(t) describes the phase as a function of time

We shift the carrier to zero hertz:

1 0
V(D) = Alt) * 007{§n(fc - /fc)ﬁ +0(1)],

=V(t) = A(t) * £ 8(t) (in phasor nomenclature)
=V(t) = I(t) +jQ(2);

and the signal is simply represented in standard nomenclature by using the terms
“1a.”

MAC Media access control: In a computer 0S| (Open Systems Interconnection)
Model, there are seven layers. The MAC layer is a data communication protocol
and is part of the data link layer. It is the sub-layer of the 0S|I model that provides
addressing and channel access control for computer networking purposes.

Glossary

NZIF Near-zero intermediate frequency: A circuit where the IQ signals have
been mixed up from DC to a low intermediate frequency.

0OBSAIl Open Base Station Architecture Initiative: A cellular base station interface
specification to enable production of base station modules for interoperability
between various module vendors.

PHY Physical layer: The first layer in the computer 0S|I model. It provides the
transmission of bits through the network on an electrical and mechanical level.

RFIC Radio frequency integrated circuit: An ASIC that has been specifically
designed to handle the radio frequency (RF) tasks of a chipset such as
upsampling, mixing and certain types of filtering.

RxTxData Receive and transmit data: Nomenclature used in the DigRF 1.12
specification for 1Q data.

RxTxEn Receive and transmit enable: A signal used by both RFIC and BBIC to
indicate RxTxData transmission is to follow.

SDR Software defined radio: A radio communications system that uses
programmable hardware which is controlled by software. The primary purpose
of such a system is to enable switching between a variety of communications
protocols.

SMA Subminiature A coaxial connector: A small coax cable connector that
uses a threaded plug and socket (a screw-on type). The SMA is used in coaxial
applications up to 18 GHz in frequency.

SMB Subminiature B coaxial connector: A very small snap-on coax cable
connector, often used on circuit boards where test points are needed. The SMB is
used in coaxial applications up to 4 GHz.

SysClk System clock: The system clock generated by the RFIC (in DigRF 1.12) to
clock the RxTxData across the BBIC/RFIC interface.

SysCIkEn System clock enable: An output from the BBIC to facilitate and power
the SysClk.

TDMA Time division multiple access: A digital wireless transmission that allows
multiple users to share a single frequency by assigning unique time slots. This
prevents interference among users of the same frequency.

TTL Transistor-transistor logic: A type of logic circuit which uses bi-polar
transistors to represent binary 0 or 1 which conform to specific voltage levels
described by the TTL standard.

ViH Voltage input high: The designated high input voltage whose voltage level
describes the threshold for a logic level 1.

ViL Voltage input low: The designated low input voltage whose voltage level
describes the threshold for a logic level 0.

49

Glossary

50

VSA Vector signal analyzer: A signal analyzer that uses FFT processing versus
swept-tuned analysis; essentially a digital spectrum analyzer.

XML Extensible markup language: A text format, based on SGML and designed
by the World Wide Web Consortium to allow you to create a document for say, a
web page, that can be easily understood by both computers and people. E.g. XML
can translate into HTML, PDF, etc. giving you only one master document to edit.

ZerolF Zero intermediate frequency: Also called “direct conversion,” ZerolF”

refers to a radio technology that uses 1Q signals instead of the older analog
modulation technology, resulting in an initial intermediate frequency at 0 Hz.

For more information on the DigRF v3 Measurement Tools for Digital Serial Interface
visit website www.agilent.com/find/digrf

Related literature

Publication title Publication type Publication number
Agilent 16900 Series Data Sheet 5989-0421EN

Logic Analysis System Mainframes

Agilent 89600 Series Vector Signal Data Sheet 5989-1786EN
Analysis Software 89601A/89601AN/89601N12

Agilent Logic Analyzers and Technical Overview 5989-3359EN
89601A Vector Signal Analysis Software

How to Measure Digital Baseband and Application Note 5989-2384EN

IF Signals Using Agilent Logic Analyzers with
89600 Vector Signal Analysis Software

For copies of this literature, contact your Agilent representative or visit
www.agilent.com/find/dvsa

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products
and applications you select.

@ Agilent Direct

www.agilent.com/find/agilentdirect
Quickly choose and use your test
equipment solutions with confidence.

Agilent
Open 'z

www.agilent.com/find/open

Agilent Open simplifies the process of
connecting and programming test systems
to help engineers design, validate and
manufacture electronic products. Agilent
offers open connectivity for a broad range
of system-ready instruments, open industry
software, PC-standard I/0 and global
support, which are combined to more
easily integrate test system development.

LXI

www.Ixistandard.org
LXI is the LAN-based successor to GPIB,

providing faster, more efficient connectivity.

Agilent is a founding member of the LXI
consortium.

Remove all doubt

Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime.
Your equipment will be serviced by
Agilent-trained technicians using the
latest factory calibration procedures,
automated repair diagnostics and
genuine parts. You will always

have the utmost confidence in your
measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent

Technologies’ products, applications or
services, please contact your local Agilent
office. The complete list is available at:

www.agilent.com/find/contactus

Phone

Americas

Canada
Latin America
United States

(877) 894-4414
305 269 7500
(800) 829-4444

Asia Pacific
Australia 1800 629 485
China 8008100189
Hong Kong 800 938 693
India 1800112929
Japan 81426 56 7832
Korea 080 769 0800
Malaysia 1800 888 848
Singapore 18003758100
Taiwan 0800 047 866
Thailand 1800 226 008
Europe
Austria 0820 87 44 11
Belgium 32 (0) 2404 93 40
Denmark 4570131515
Finland 358 (0) 10 855 2100
France 0825010 700
Germany 01805 24 6333

*0.14€/minute
Ireland 1890 924 204
Italy 3902 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French)

44 (21) 8113811 (Opt 2)
Switzerland (German)

0800 80 53 53 (Opt 1)

United Kingdom

44 (0) 7004 666666

Other European countries:
www.agilent.com/find/contactus

Revised: March 23, 2007

Product specifications and descriptions
in this document subject to change

without notice.

© Agilent Technologies, Inc. 2007
Printed in USA, May 8, 2007

5989-5290EN

o, Agilent Technologies

