1

@ =

APPLICATION NOTE 16719
DATA DOMAIN' MEASUREMENT 'SERIES

Systematic
"turn-on’" of
microprocessor
systems: using
logic state
analyzers.

reprinted from Electronic Design Magazine

TECHNOLOGY

Bring up your uP "bit-by-bit.”

With a systematic, section-by-section approach
you can test both hardware and software in less time.

Reprinted from Electronic Design 15, July 19, 1976, copyright 1976 by Hayden Publishing Company, Inc

Unless you enjoy spending weeks or months in
unraveling complex puzzles, take a systematic ap-
proach when you develop uP-based systems.

Two basic procedures underpin the approach:
turn the system on one piece at a time, and debug
software and hardware together. The tool that
allows all this is the logic-state analyzer.

With the analyzer, you can develop a uP sys-
tem with the same technique you usually use to
develop a cascaded amplifier. That is, you usually
turn on and check out the amplifier one section
at a time by injecting a signal into the input and
measuring the output of each section with a volt-
meter, spectrum analyzer or oscilloscope. In turn-
ing on uP systems, analyzers offer a similar ap-
proach, and so ease the development process.

In operation, analyzers measure information
transfer—program addresses, program instruc-
tions or any data that appear on any of the
busses or ports within the uP system.

One analyzer can display sixteen 16-bit data
words at one time, or sixteen 32-bit words with
a companion analyzer. These words are displayed
as ONEs and ZEROs and are selected with a pat-
tern trigger and digital delay (Fig. 1).

The pattern, or data word, is selected by set-
ting the 32 pattern-trigger switches to high, low,
or off. The delay can be such that the display
starts anywhere from 15 words before the pat-
tern trigger, to 99,999 words after the trigger.
Since the analyzer has a digital memory, data
can be captured single-shot and displayed indefi-
nitely.

Another useful analyzer feature is an output
that can trigger a scope at any byte in a digital
process. With the trigger, you can examine wave-
forms in detail.

Sequential operations cause problems

In developing a systematic process for turning
on a uP system, remember that it's the data
transactions on the various busses that determine

W. A. Farnbach, Engineering Section Manager,
Hewlett-Packard, 1900 Garden of The Gods Road,
Colorado Springs, CO 80907.

80

1. A functional display of ONEs and ZEROs gives designers
an overview of the operation of a digital system. Words are
captured in the analyzer's memory.

a system’s function. Consider the uP system of
Fig. 2. If all of the elements in this system are
wired up, plugged in and turned on, chaos will
almost surely result. Any small wiring mistake or
logic error can cause the system to run amok.

Such alarming behavior results because the
entire system is one giant digital-feedback loop.
The next value of the program counter depends
on the current instruction, but the latter depends
on the current value of the program counter.

Interchanging two address lines causes the in-
structions to be executed in an entirely random
sequence. A small logic error, which allows two
ROMs to respond simultaneously to an address,
will cause the outputs of the ROMs to be wire-
ANDed, again putting entirely random instruc-
tions on the data bus.

Similarly, data stored in memory—to be read
back later for conditional branches—are deter-
mined by instructions executed long ago, and the
instructions to be executed in the future depend
upon those stored values. Current or post values
of the I/0 ports also participate in decisions that
affect future operation.

The only reasonable approach to turning on
such a system is to break the feedback network

ELECTRONIC DESIGN 15, July 19, 1976

CLOCK RESET
GENERATOR CIRCUIT

DATA BUS_| MICROPROCESSOR| ADDRESS BUS
ROM
RAM
1/0 PORTS
(ETTTRETT

2. Generalized microprocessor system contains fixed programs
in ROMs and data in RAMs. Interaction between the memory
and uP appears like a feedback loop.

into pieces, so that each piece can be turned on
independently.

The first candidates for turn on are the clock
generator and reset circuits. These relatively
simple timing circuits are best tested with a
scope for proper timing and waveshape. Once
these circuits are within specs, the next step is
to check the interaction between the uP and the
ROM.

A crucial path: uP to ROM

The linkage between the ROM (or RAM) and
the uP is the first to be established because with
this link, the processor can be programmed to
gerve as a signal generator for testing the re-
maining blocks. The linkage is tested in three
steps:

First, you must establish that the NOP (no
operation) instruction is being transmitted cor-
rectly to the processor. Second, establish that the
program addresses are transmitted correctly to
the ROM. Finally, determine that the ROM inter-
prets the program addresses correctly.

To perform the first step, plug in only the uP
and put the NOP code on the data bus (Fig. 3a).

ELECTRONIC DESIGN 15, July 19, 1976

In forcing the data bus to NOP, realize that
many uPs will try to put data onto the bus during
an operating cycle. If the data bus is simply
wired to the NOP state, then the data-output
buffers in the uP can be destroyed. You can avoid
this problem in two ways.

Since the uP data inputs are usually high im-
pedance, the data bus can be forced safely to
NOP with large resistors. Or, it can be forced
to NOP through a set of three-state gates. Con-
nect the three-state control to the processor read/
write line so that the gates are active only when
the processor reads data.

This set-up will cause the program counter in
the processor to increment. That is, the processor
will execute a NOP, increment the program
counter, execute the next NOP, and so on. You
can easily measure the counting sequence on the
address bus with the analyzer. Simply connect
the 16 data inputs to the address bus at the
ROM socket, and connect the clock input to the
data-transfer processor clock.

The count sequence also can be easily verified.
Just trigger the analyzer on 0000 , increment
the delay generator through several values, and
compare the count displayed on the state analyzer
with the delay setting. Obviously, the count (in
decimal) and the delay value will be equal if the
ROM receives correct addresses.

In this way, you verify that the processor is
executing NOPs and that the addresses are cor-
rectly transmitted to the ROM. If the addresses
do not form a counting sequence, then an exami-
nation of the address pattern should quickly re-
veal if address lines are interchanged or are in-
active, or the processor is executing an unex-
pected branch instruction.

If you suspect that the processor is not execut-
ing NOPs during the instruction read phase, then
connect the state analyzer to the data bus directly
at the processor.

Check waveforms at each change

At this point, it is also important to examine
the waveforms on the busses and the control
lines. Any incorrect timing, marginal voltage
levels, noise or crosstalk should be eliminated be-

81

fore proceeding. In fact, you must do this every
time you add a new block to the system. Any
input or output hung onto a common line can
cause a problem.

The analyzer's scope-trigger output is very use-
ful, especially as more blocks are added. For
example, to examine the waveforms on the data
bus when the bus is driven by the RAM outputs,
you need only trigger the analyzer on the RAM
read address or on the address of the RAM read
instruction, then trigger the scope with the ana-
lyzer's pattern-trigger output.

Although such testing may seem needlessly
repetitive, it takes very little time if there is no
problem, and saves a great deal of time, if there
is one by pinpointing the troublesome block.

Next, plug in some ROMs with known stored
information and connect only the address lines
and chip-select logic (Fig. 3b). Since the instruc-
tions returning to the processor are still NOPs,

RESET cLock
CIRCUIT GEN
DATA I
BUS
MICROPROCESSOR
-

—

AAA
WV

$p888

WIRED TO SUPPLY OR GROUND
TO GENERATE NOP

®

- Ie—=a
By

3. To check transactions between the uP and ROM requires
three steps. The first step verifies NOP transmission (a), the
second checks ROM addressing (b) and the last step tests the
completed link (c).

82

the program counter will continue a simple count.
This time, however, the ROMs will cycle through
all possible addresses so that you can measure
the ROM outputs with eight data inputs to the
analyzer.

Keep 16 data inputs connected to the address
bus, if possible. It isn’t necessary to measure all
possible values of ROM output, but you should
check sufficiently to verify that the correct ROM
is selected and that every ROM is addressed
correctly.

Since not all 65-k addresses are ordinarily al-
located to ROM, it might be necessary to connect
temporarily some pull-ups to the ROM outputs.
With pull-ups, an address outside the allocated
ROM addresses will generate a known data word
(all highs).

You should also check some addresses outside
those of the ROM to verify that the ROMs are
off when they are not addressed. Remember to
check the waveforms on the address bus and cen-
tral lines, particularly on the control lines of the
ROMs.

Finally, complete the processor-to-ROM link by
removing any circuitry required to force the
NOPs onto the uP and connecting the ROM out-
puts onto the data bus (Fig. 3c). A ROM contain-
ing a simple program, with several unconditional
jumps, should be installed (Fig. 4). Verify oper-
ation of this program by monitoring the address
bus with the analyzer.

The program includes RAM access and /0 in-
structions so that the RAM and I/0 control
cycles can be checked before the RAM and 1/0
devices are installed. The timing of these cycles
is easily checked. Just use the analyzer to trigger
a scope at the beginning of each RAM or 170
instruction.

It isn’t necessary to monitor the data bus—
unless there is a problem—because the sequence
of program addresses is ample to verify proper
execution of the program. Although only a very
simple program is required to test the uP-to-
ROM data link and the RAM and I/0 control
cycles, a more elaborate program can be used if
desired.

Debugging RAM and 1/0

In no case, however, should any branches on
RAM or 1/0 instructions be used at this point, as
the RAM and 170 blocks have not yet been turn-
ed on and debugged. If enough ROMs are avail-
able, the test ROM, and any others used in the
turn-on procedure, should be saved for future
units.

The checkout of the uP-to-ROM data link is by
far the most tedious. The reason is that this link
must always be a feedback process. That is, each
instruction depends on the address, and each ad-

ELECTRONIC DESIGN 15, July 19, 1976

dress depends on the previous instruction.

The RAM and I/0 blocks can be turned on
much more directly, and in any order. If you
choose the RAM first, you can connect it to the
system in one operation.

With the RAM connected, run the ROM test
program briefly to verify operation. Pay particu-
lar attention to the timing of the RAM control
signals during the RAM read and write instruc-
tions. The usual cause of failure at this point is
a shorted address or data line, two lines shorted
together, or an unwanted RAM response.

Again, the analyzer will reveal quickly the
location of the problem, and a scope trig-
gered from the analyzer will show the nature of
the problem. With the ROM program verified,
now run a RAM test.

A RAM test program should write to every
location in memory, then read each location back
and verify the data. With an eight-bit-wide
memory, watch out for a pitfall:

The eight bits of memory represent only 256
states. Conventional memories are usually much
longer. This means that each possible data pat-
tern must be written several times to fill the
memory. If the same data are written into each
block of 256 words, an error in any of the high-
er order addresses can be masked.

An extreme example of such masking is the
case where all address lines (A8 to Al5) are dis-
connected. Any simple perturbation of the 256-
word pattern—such as shifting the pattern one
word location in each block—will reveal the prob-
lem (Fig. 5).

For example, if you count from 0 to 255 in
the first block, you should count from 1 to 255,

YA
JumMPTO B

Vs
EXECUTE RAM
WRITE

]

EXECUTE RAM
READ

]

EXECUTE OUTPUT
INSTRUCTION

Y

EXECUTE INPUT
INSTRUCTION

Y

JUMP TO C

e

JUMPTO A
]

4. Verification program checks out the ROM-to-processor data
link. Also checked are 1/0 control cycles.

ELECTRONIC DESIGN 15, July 19, 1976

then go back to ZERO in the next block; next,
count 2 to 255, and go back to ZERO and ONE
in the next block, and so on. The flowchart of an
effective RAM-module test program is shown in
Fig. 6. Remember, this test verifies that the
memory system is working correctly—it does not
check each cell of each memory location.

Again, if you design the program so that all
locations are written and then read back, the
analyzer quickly shows whether the data are cor-
rect. An oscilloscope triggered by an analyzer
shows whether the waveforms are correct.

Although the I/0 block is relatively easy to
turn on, the discussion here is somewhat general
since I/0 structures vary more than other blocks
from one uP system to another. The main point
is to test the I/O ports before connection to
peripheral devices, such as keyboards, displays,
or circuits to be controlled. The first step is to
put the ROM test program back in, and verify
that the control timing is correct with the ports
connected during the I/0 instructions.

You can check the output ports easily with a
simple program that first sets all the ports to
ZERO, then sets each port in turn to ONE, and
finally sets each port back to ZERO one at a time.
When testing the output ports, connect the ana-
lyzer to one block at a time.

If sufficient data channels are available on the
analyzer, connect these to the address bus as
well (Fig. 7). The object of this exercise is to
see if the output ports are connected in the
proper order and can be set both high and low.

The input ports are similarly tested. The pro-
gram should check for each input high, then for
each input low.

RESET CLOCK
CIRCUIT GEN
[¢
= ADDRESS
%‘:_,5 MICROPROCESSOR | BUS
ROM
[omoees]
RAM AO-ALS

l

5. Test set-up to turn on the system RAM verifies the writing
and reading of each location in memory.

83

BEE EB8E
23 -e'zeseslescciee

eecleee

. -
fos et e EEEREE 09|
%% * 'm ‘goAm wae awn
‘Bo O An atmasin Al el el e
=n = S.350

Logic state analyzer shows up to sixteen 32-bit words at a time.
Data are put into memory when the instrument recognizes a
selected word or are captured after a set delay.

The test, of course, is performed by a program
that loops until the input under test is forced to
the desired state, then jumps to another loop
(Fig. 8). A simple approach is to pull all of
the inputs either high or low, whichever is
easier, through a resistor.

Assuming you selected the "high” approach,
write a program that has two loops: the first to
test for a specific input low and the second for
that input high. While the analyzer monitors the
address bus and at least the one input under test,
force the input low with a grounded wire. The
analyzer will show which loop the processor is in,
exactly when the input went low and—usually in
a second pass—when the input went high.

Although this process may seem tedious, the
time required to write the test programs must
be spent only once. The programs will be invalu-
able at every phase of system development.

The process of developing the software is quite
a bit like turning on the hardware. The major
idea is to develop the software in pieces. This
idea isn’t new. Nobody in his right mind sits
down, writes six-thousand words of code, plugs
it in, and expects the whole thing to work right
off. You must develop and test the coding in
manageable bytes. Three alternatives are avail-
able: simulators, breakpoint registers and logic
analyzers.

A simulator—either a development system or
a large computer—can be a valuable aid in test-
ing such complex algorithms as sorting routines
or mathematical functions. But it is difficult to

84

BEGIN

GENERATE
NEXT WRITE
ADDRESS

GENERATE
RAM
DATA

WRITE
T0 RAM

GENERATE NEXT
READ ADDRESS

—

READ RAM

RAM CORRECT

YES

6. RAM-module test program wrings out memory system op-
eration, as monitored by the logic analyzer.

adequately simulate the software that performs
the bulk of I/0 operations—and it's at the 1/0
ports that major trouble usually develops.

Breakpoint registers and a single-step button
are another way to follow the operation of a
program. Such registers, or control panels, suffer
from several drawbacks:

First, to build the control panel requires a
fair amount of time and effort. Second—and far
more serious—the operation of the processor
must be slowed down by a factor of several mil-
lion to observe the process at human speeds.

Not only does this great reduction in speed
cause major changes in the operation of the whole
system, it can make even a simple algorithm take
a long time to complete.

In the third technique, using the logic-state
analyzer, it doesn’t really matter whether the
software has been simulated beforehand or not.
(Although, as mentioned before, if a simulator

ELECTRONIC DESIGN 15, July 19, 1976

RESET
CLOCK
CIRCUIT GEN
DATA
sk MICROPROCESSOR
ROM
ADDRESS
BUS
RAM
AT —
PORTS
OUTPUTS INPUTS -
[

Vi

>
>
3

Wi
AAA

(o}
v

7. Test the 1/0 ports before you connect the system's peri-

pherals. First, verify control timing.

is available, it can be a help in developing some
parts of the software.) One clear advantage of
the analyzer approach is that the hardware and
the software are debugged in parallel instead of
in series. Another is that the analyzer can moni-
tor the program flow in real time.

In debugging software, you use the analyzer
in the same way as when debugging hardware.
In fact, most of the hardware debugging tech-
niques are simply a matter of monitoring the flow
of a simple program, then fixing the hardware
when the program does not work.

The process of debugging software, as it usually
arises, is really more a problem of identifying
a problem, deciding how the software and hard-
ware contribute to the problem, then doing the fix.

In pinpointing whether software or hardware
is the culprit, the logic analyzer excels. Once the
hardware is checked out—from the lock and
reset generators, to the I/0 ports—the software
can be loaded in small blocks and tried out.

Although you can debug the software in
any order, several rules may be helpful. It is
usually best to turn on the keyboard or other
entry device first, then any display or output de-
vice. Next, turn on the hardware and software
together.,

Note that the logic-state analyzer can serve as
a breakpoint register. Connect its trigger output
to a flip-flop and use the flip-flop output as the
break signal (Fig. 9).

ELECTRONIC DESIGN 15, July 19, 1976

]

SELECT NEXT PORT
TO BE READ

P |

22 |
READ PORT

NO

READ

2
= !

8. Input-port test program loops around to force the desired
state, then jumps to another loop.

MICROPROCESSOR
SYSTEM

HALT, WAIT,
INTERRUPT, ETC.

i 750

= 1k
AAe O 5v

2 UQD_I

9. Connect the analyzer's trigger output to a flip-flop, and the
instrument can halt or interrupt P action.

Bibliography
Farnbach, W. A., "“Logic State Analyzers—a New In-

strument for Analyzing Sequential Digital Processes,”
IEEE Transactions on Instrumentation and Measure-
ment, Vol. IM 24, No. 4, December, 1975, pp. 353-356.

Farnbach, W. A., "Troubleshooting in the Data Domain
Is Simplified by Logic Analyzers,” Electronics, May 15,
1975, pp. 103-105.

House, C. H. "Engineering in the Data Domain Calls
for a New Kind of Digital Instrument,” Electronics, May
1, 1975, pp. 75-81.

Small, C. T. and Morrill, J. S. Jr., "The Logic State
Analyzer, A Viewing Port for the Data Domain,” Hew-
lett-Packard Journal, August, 1975, pp. 2-10.

HEWLETTE?PACKARD

Application Notes In the 167 serles with the primary Instrument(s) used in parenthesis.

167-1 The Logic Analyzer (S5000A).

167-2 Digital Triggering for Analog Measurements (1601L).

167-3 Functional Digital Analysis (1601L).

167-4 Engineering in The Data Domain Calls for a New Kind of Digital Instrument
(Describes measuremen! problems and various solutions with applicable in-
struments.)

167-5 Troubleshooting in the Data Domain is Simplified by Logic Analyzers (1600A and
1607A)

167-6 Mapping. a Dynamic Display of Digital System Operation (1800A).

167-7 Supplementary Data from Map Displays mmm mannmo Probes (1600A).

167-8 Stable Displays of Disc Sy Wavel to Record Addresg (1620A).

167-9 Funmnnal Analysis ol Motorola MBBOO M{crnpmoessor Systems (1600A and
1607A).

167-10 Using the 16204 for Serial Pattern Recognition (1620A).

167-11 Funclional Analysis of Intel 8008 Microprocessor Systems (1600A and 1607A).

167-12 Functional Analysis of Fairchild F8 Microprocessor Sy (1600A and 1607A)

167-13 The Role of Logic State Analyzers in Microprocessor Based Designs (1600A
and 1607A)

167-14 Functional Analysis of BOBO Microp: i Sy (1600A and 160TA).

167-15 Functional Analysis of Intel 4004 Microprocessor Systems (1600A and 1607A).

167-16 Functional A.nalysnso‘l Intel 4040 Microprocessor Systems (1600A and 1607A).

16717 Fur A of ? | IMP Microprocessor Systems (1600A and 1607A)

167-18 Functional Anah,-sss ol National Semiconductor SC/MP Microprocessor Sys-
tems (1600A and 1607A)

167-19 Systemalic “lurm-on” of P Systems using Logic State Analyzers (1600A

and 1607TA)
VIDEQO TAPE SERIES: mwwmtnmmmubnmmmmm
and Measuremenlts” introduces logic state analysis and lechnig unique

lo the data domain. Contact your HP Field Engineer for price and availability of this
color tape series.

For More Information, Call Your Local HP Sales Office or, in US, East (301) 948-6370. Midwes! (312) 677-0400. South (404) 434-4000. West (213) B77-1282 Or, Write: Hewleti-Packard,
1501 Page Mill Road. Palo Ano, Calfornia 94304, In Europe, Post Office Box B85 CH-1217 Meyrin 2, Geneva, Switrerland In Japan, YHP, 1-59-1, Yoyogi, Shibuya-Ku, Tokyo, 151

5952-2036 PRINTED IN U.5.A.

