-~

APPLICATION NOTE 292
DATA DOMAIN MEASUREMENT SERIES

Minicomputer
analysis

| | techniques
using Logic
Analyzers

[éﬁ HEWLETT

PACKARD

TABLE OF CONTENTS

Page
INTRODUECTION .. ouicouvaniam s sl palasis v 1
SOFTWARE DIAGNOSTIC TECHNIQUES.................. 1
LD AMRALYTERE . . .oooo o coinmanomainiiesmamionse s i s 1
IR RORBERBAREORE 6 v i v 9o % s o b e 1
DataStoragec.ciiiiiiiiiiiiiiiiiiiinennnn, 2
R TIN5 e w0 R w0 M 2
Functional Measurements 2
Interaction with Other Instruments 3
MINICOMPUTER ARCHITECTURES...............cooiin.. 3
Asynchronous Operationc.vvne.. 3
Synchronous Operationc.ccciiiiiiiennnn. 3
SETTING UP THE LOGIC ANALYZER 3
STATE FLOW ANALYBIDconcivuiviiaiviessvesis e 4
Basic State Flow Measurement 4
RRORDN EONINIENE v oo oo i wiios oo Mo e 5
Measurements from Graph Mode 5
Measurements on Selected Types of Information 5
Complex State Measurements Using Sequential
g - e PR P S R B N 7
Measuring Execution Timec..... 8
Locating IntermittentErrors 9
TG ANRLY RIS . i cave el LS bl s s e el 10
Analysis of Timing Relationships of Control Lines 10
GIICH DOBCHON. . viviscisivisediins o niiat ditessire 1
Asynchronous Measurements with a Logic State
BRI .. o 50000000 w00 im0 AR 13
SUMMARY ...ttt ittt it et e 14

APPEIEIIMR .o cnmannrisanassnsesins b neyssssionmesy s 14

INTRODUCTION

Minicomputer System designers and users can
benefit from a better acquaintance with debugging and
troubleshooting techniques which use logic analyzers.
Logic analyzers are also valuable tools in software
evaluation and code optimization. A quick way to get an
overview of what a logic analyzer is and how it is used
with minicomputers is to look at some common applica-
tions and measurements. While the focus is on logic
analyzers and minicomputers, the techniques described
are equally applicable to similar problems in micropro-
cessors and mainframes.

SOFTWARE DIAGNOSTIC TECHNIQUES

Problem solving in a minicomputer system is not a
simple task. A typical system may consist of a computer,
several peripherals from various manufacturers or in-
house design, and often, at least one intelligent peri-
pheral built around one or more microprocessors. As the
systems have evolved, a set of programs have been
developed concurrently which are known, as a class, as
software diagnostics. Software diagnostics are used to
troubleshoot the central processing unit (CPU) and
devices on memory and | /O buses. Well-designed soft-
ware diagnostics will usually identify a faulty module,
but not necessarily pinpaint the cause.

There are several major limitations to troubleshooting
solely with software diagnostics. To run a diagnostic
program, the system must be operating at a minimal
level; a hung-up bus or a dead system can't be analyzed
with software. Diagnostics often will not identify intermit-
tent problems or errors in the application software. Fora
full set of troubleshooting tools, software diagnostics
should be supplemented with instruments which moni-
tor system lines, activity, and timing in real time. The
complexities of troubleshooting minicomputer systems
require the real-time, analytical capabilities of a logic
analyzer.

LOGIC ANALYZERS

Today's microprocessor controlled logic analyzers
{figure 1) provide a powerful measurement set capable
of testing complex minicomputer systems. To be useful

If B

Figure 1. The powerful measurement set of today's logic ana

lyzer is made possible by microprocessar control.

¥,

in troubleshooting minicomputer systems, the logic ana-
lyzer must be able to collect, store, and display informa-
tion, perform some functional measurements, and
interact with other measurement devices.

DATA ACQUISITION

Logic analyzers monitor minicomputer systems which
are running at normal operational speeds. Two ques-
tions arise: how is data acquired, and what data is
acquired?

Data Channels. A typical minicomputer has 16 or 18
bits of address, 16 bits of data, and control lines. For
analysis of state flow, it is necessary to have simulta-
neous, correlated information from these inputs. Con-
sequently, even early models of logic analyzers
accommodate a minimum of 16 input channels plus 2 or
more inputs from control lines or external signals, and
more recently developed logic analyzers have 32 input
channels with four or more auxiliary input channels.
Trace Specification. The data collected by alogic ana-
lyzer and shown an the display is called a trace. This
trace is a window into the state flow of the minicomputer,
and the process of determining where to place the win-
dow is called trace specification. The simplest trace
specification is a single-pattern trigger. For simple, in-
line program flow, a particular state is set on the ana-
lyzer, and when that state appears for the first time, it
acts as a trigger for the logic analyzer memory and the
subsequent states are stored.

Programs in minicomputer systems are rarely simple,
and a more sophisticated trace specification is needed.
Consider a program with many complex branching net-
waorks, (figure 2). A sequential trigger, as shown in fig-
ure 2, permits a trace to be made of a unique program
path selected from several alternative paths. Sequential
triggering can also be used to pick up parameters
entered early in program flow for use in subsequent sub-
routines, and the logic analyzer displays these parame-
ters first, just ahead of the trace listing of the subroutine.

FIND IN SEQUENCE 024114
THEN 024124
THEN 024130

START 024156
[RESTART] ON 024160

it

Figure 2. A sequential trace specification is needed to trace a
specific path (#2) in a program with complex network
branching.

L%

A multiple-occurrence trigger is a valuable trace
specification for unraveling nested loops in program
flow. For example, a program may sequentially sample
several peripherals (major loop), receive data from each
peripheral (minor loop), and then format data from each
transmission (subminor loop). The combination of a
sequential trigger and a multiple-occurrence trigger
could focus the analyzer window to view only the sixth
data format of the third data transmission from peri
pheral three.

Two trace specifications which facilitate monitoring
clock and control lines are the ORed trigger and the
ANDed trigger. One logic analyzer (HP Model 1615A)
has a glitch trigger which initiates a trace if an
unwanted interference of specified magnitude (glitch)
occurs on a designated signal line,

These trace specifications make analysis of mini-
computer systems quicker and more effective. They
allow the user to check only state flow that is pertinent,
and to focus more quickly on software or hardware that
may be malfunctioning
DATA STORAGE

The result of trace specification is a selective trace
and only the states of interest are stored in the logic ana-
lyzer. Data captured for analysis can be restricted to a
particular operation, specific activities, or a selected
range of addresses. To capture every state activity
would require an enormous memory capacity, and
severely tax the analyst's time by forcing him to study
reams of output to locate isolated malfunctions or incon-
sistencies. A selective trace provides the data needed
and omits activities that are extraneous to the situation
DATA DISPLAY

Once the data has been acquired and stored, it must
be displayed in a meaningful format for analysis. Logic
analyzers offer a variety of formats, which fall into three
general categories: list displays, timing diagrams, and
system overviews.

List Display

The most frequently used format is the list display (fig-
ure 3), which is a convenient format for detailed ana-
lyses of software execution. Freedom to specify the
format varies with the logic analyzer used, but with the
two models used for most examples in this paper, HP
Model 1610A and HP Model 1615A, the operator can
choose clock slopes, logic polarity, numerical bases
and group inputs under different labels
Timing Diagrams

Model 1615A Logic Analyzer provides an 8-channel
timing diagram (figure 4) as a display mode. Timing dia-
grams show the functional time relation between control
lines, and these diagrams facilitate investigation of
handshake and control state problems. The 1615A can
display timing phenomena that occur prior to a trigger
point, make single-shot multichannel measurements
and detect and trigger on glitches

System Overview
A convenient display feature available on Mode

1610A Logic Analyzer is a graph mode. A selected
parameter, e.g. address, is plotted with magnitude on the
Y-axis and sequence of occurrence on the X-axis (fig

ure 5). With this form of display, an operator can quickly
identify irregularities and discontinuities in program flow

--TRACE LIST_____._. ----TRACE-COMPLETE

Tine

DEC

g
[

122227

L Y L T Y T ¥ e
B eneis PN B e
BNEON = OB W NN OO WA DD WA

BB RGP B b D P G G

@270083
e37811

g5

Figure 3. This Model 1610A list display shows address and

data flow on an HP 21MX S-bus
TRIGGER
EVENT |

TIMING DIAGRAM TRACE-ABORTED

EXPAND INDICATOR SONSCLK |
GLITCH DISPLAY 1US- DIy |
MAGNIFICATION 19 8US
I r
. LT
HLTRO

INIT

BBSY

BR4

SPARE

Figure 4. A Model 1615A timing display shows activity on con-
trol lines during a typical bus transaction

TRACE GRAPH..oweeeeen---TRACE-COMPLETE. ..
UPPER LINM

QFF SCALE DATA

GRAPHED LABEL
LABEL 8ASE

LOMER LINIT
E 2]

Figure 5. This Model 1610A trace graph shows averall system
activity dur ng a program loop.

FUNCTIONAL MEASUREMENTS

Common functional measurements include elapsed
time of program execution for two systems (the bench-
mark technique), elapsed time of execution for two pro-
grams on the same machine, and an event count for a
particular routine. These and similar measurements
provide quantitative information as to comparative merit
of instruments, efficiency of software code, likely sites of
malfunction, etc.

INTERACTION WITH OTHER INSTRUMENTS

In design, implementation, and troubleshooting, it is
frequently convenient to use an analog measurement
instrument, e.g., an oscilloscope, in conjunction with the
logic analyzer. All Hewlett-Packard logic analyzers pro-
vide some form of a trigger output based on a defined
state or timing condition. A common technique is to pin-
point a faulty piece of hardware through an analysis of
state flow, and then use the trigger capabilities of the
logic analyzer 1o trigger an oscilloscope to study wave-
forms at that point. The trigger output is also useful for
gating clocks, interrupting the system activity, triggering
“clock stopper” circuits, or halting the system at break-
points for static debugging.

MINICOMPUTER ARCHITECTURES

Basically, minicomputer architectures fall in two
groups by manner of operation, asynchronous and syn-
chronous. Asynchronous operation transmits signals
under control of interlocked handshake signals. In syn-
chronous operation, sequence of transmissions is con-
trolled by equally-spaced clock signals.

ASYNCHRONOUS OPERATION

Typical of asynchronous systems is a DEC PDP-
11/04@ (figure 6), which uses a single 56 line UNIBUS®
for communication between the CPU, memory, and any
peripheral devices. Communication between devices is
defined by the sequence of states on a set of interlocked
UNIBUS control lines, the handshake sequences. A pro-
tocol of handshake sequences sets the master-slave
relationship at any given time, and specifies what type of
information is being passed and where. Another asyn-
chronous system is the DEC LSI-11@. While the PDP-11
UNIBUS has separate address and data lines, the LSI-
11 Q-BUS® multiplexes address and data on the same
lines.

DEC PDP-11 Architecture

CPU MEMORY PAR,‘/‘C';"EL
| 3 :
[UNIBUS 56 LINES ”?_l
MEMORY SE:(')AL TERMINATOR

Figure 6. DEC PDP-11 architecture is a typical example of a
system which operates asynchronously.

SYNCHRONOUS OPERATION

Systems which operate synchronously use a system
timing generator. Usually there are two buses, a higher-
speed memory bus and an I/ O bus for slower peripheral
devices. An example of a synchronous system, the HP
21MX, is diagramed in figure 7. Other synchronous sys-
tems are Data General's NOVA 3®'and Micro NOVA®&2

® Registered, Digital Equipment Corporation

L%]

systems. As with asynchronous systems, what goes
where is determined by the sequence of states on con-
trol lines, but the time of transmisson is set by defined

cycles in time.
OPERATOR

PANEL MEMORY [rErT wimCay ‘

CONTROLLER

K i
PORT
CONTROLLER
K L0 WU hf}
U '
v]

Figure 7. The HP 21MX biock diagram illustrates one example
of a system that operates synchronously.

DuUAL

N

CHANNEL

SETTING UP THE LOGIC ANALYZER

The first step in viewing activity on a minicomputer
with a logic analyzer is connecting the system to the
analyzer. You always have the option of connecting 24
to 36 individual leads, but this procedure is time con-
suming and error prone. A more convenient way to con-
nect the system and the analyzer is to use a dedicated
interface. Hewlett-Packard now offers interfaces for
some of the more popular minicomputers.
Interfaces available now include:

Model 10275A PDP-11 UNIBUS Interface

Model 10276A LSI-11 Q-Bus Interface

Model 10278A HP 1000 Series Interface

Model 52126A Intel MULTIBUS®? Interface
Interfaces will be soon available for Data General's
NOVA 3 (HP Model 10279A) and MicroNOVA (HP Mode!
10280A). To further simplify the hookup, add Model
10277 General Purpose Probe Interface, as illustratedin
figure 8. The probe interface includes interchangeable
wire-wrap boards that allow the user to choose the
address, data, and/or control lines to be monitored.

It is often desirable, and sometimes necessary, to pre-

Figure 8. The HP 10278A with an HP 10277 Probe Interface
provides a method for easy, fast hookup between a logic ana-

#1 Registered, Data General

lyzer and an HP Series 1000 minicomputer.

. I,

#2 Registered, intel Corp.

process signals to the logic analyzer. The UNIBUS, for
example, does not have a distinct clock signal as-
sociated with address or data lines, and operates
asynchronously using handshake signals. A dedicated
interface, Model 10275A PDP-11 UNIBUS Interface
derives a logic analyzer clock with decoding circuits on
handshake signals. Some signal preprocessing is done
directly on the interfaces. For a detailed description of
the dedicated and general purpose interfaces, refer to
the appendix.

STATE FLOW ANALYSIS

State flow measurements illustrate techniques for
monitoring complex program execution in real time. For
the examples that follow, the measurement system
includes a Model 1610A Logic State Analyzer and the
DEC PDP-11/04 Minicomputer connected with two
interfaces, Model 10275A UNIBUS Interface and Model
10277A Opt 001 General Purpose Probe Interface.

BASIC STATE FLOW MEASUREMENT

The simplest measurement to make is to collect and
display in-line code during program execution. The ana-
lyzer display is called a trace list. A line-by-line com-
parison of the 1610A trace list and the program
assembler listing will reveal any inconsistencies
between what is expected and what actually happens.

.FORMAT SPECIFICATION.TRACE-RBORTED. .

CLOCK SLOPE
CpEL:

POD
PROBE

LABEL ASSIGNMENT
(A.8.C.0.E.F.X3 : i
ACTIVE CHANNELS

LABEL A
LOGIC POLARITY =
o

0
(-1}
(oomd 4
NUMERICAL BASE [f = i)
<(BIN.OCT.OEC.HEX>

Figure 9. Model 1610A Format Specification selected for mani-
toring the DEC PDP-11/04 sets 16 channels for address and
16 channels for data, all in octal base.

Figure 10. This is the Trace Specification for making a simple
trace beginning at address 002000g, and listing 64 sequential

states.

Ve
WFD, JUL 18, 1979,

002000 010706 BEGN MQV R7,P6
002002 062706 005776 ADD #n,PR6
002006 010705 MOV R7,RS
002010 062705 000470 ADD #n,R5
002014 010504 MOV RS5,R4
002016 012725 005015 MOV #n, (RS5)+
002022 012725 051120 MOV #n,(R5)+
002026 0l2725 051505 MOV #n,(R5)+
002032 012725 020123 MOV #n, (R5)+
002036 012725 047101 MOV #n,(R5)+
002042 012725 020131 MOV #n, (RS)+
002046 012725 042513 MOV #n, (R5)+
002052 012725 020131 MOV #n, (R5)+
002056 012725 047524 MOV ¢n, (R5)+
002062 012725 044440 MOV #n, (R5)+
002066 012725 052116 MOV #n,(R5)+
002072 012725 051105 MOV #n, (R5)+
002076 012725 052522 MOV #n, (R5)+
002102 012725 052120 MOV #n,(R5)+
002106 012725 046440 MOV #n,(R5)+
002112 012725 020105 MOV #n,(R5)+
002116 005205 INC RS
002120 010403 OVFR MOV R4,PR3
002122 112300 MESS MOVB(R3)+, PO
002124 004267 002650 JSR A ourT
002130 020305 CMP R3IRS
002132 001373 BNE MESS
002134 000005 REST
002136 012737 002600 000060 MOV#n,@88A
002144 012737 000340 000062 MOV#n, @#A
002152 012737 000140 177776 MOV#&n,@%#A
002160 012737 000100 177560 MOV#n,@%A
002166 000001 WAIT
002170 000167 177724 JUP A OVER

N

10:30 AM

PEFERENCE R6& T0O THE PC

SET THE STACK POINTER (7776)
REFERENCE PS5 TQ THE PC

POINT TO 1ST ADD. IN INTR. MESS. (2500)
RFFFRENCE INTERRUPT MFESSAGE 1ST ADDPESS
MOVE LF,CR TO INTERRUPT BLOCK
MOVE R,P TO INTERRUPT BLOCK

MOVE S,E TO INTERRUPT BLOCK

MOVE SB,S TO INTEPRUPT BLOCK

MOVE N,A TO INTERRUPT BLOCK

MOVE SR,Y TO INTEPRUPT BLOCK

MOVE F,K TO INTFPRUPT RLOCK

MOVF SB,Y TO INTERRUPT BLOCK

MOVFE Q,T TO INTERRUPT BLOCK

MOVE I,SB TQ INTFPRUPT RLOCK

MOVE T,N TO INTERRUPT RIOCK

MOVE P,E TO INTERRUPT BLOCK

MOVE U,R TO INTERPUPT RLOCK

MOVE T,P TO INTERRUPT BLOCK

MOVE M,SB TO INTFRRUPT BLOCK

MOVE SB,F TO INTFRRUPT BLOCK

ADD ONE TO BLOCK

SET R3 = INTERPUPT MFSSAGF ADDRESS
MOVE DATA BYTFE TO XFER PEG,

QUTPUT DATA BYTE TO TEPMINAL (5000)
ALL BYTES.QUT?

NO, GET NEXT BYTE

RESET THE UNIBUS

LOAD INTR TRAP CELL WITH ADDRESS
LOAD NEXT CELL WI PRIORITY

SET PPOCESSOR PRIORITY

TURN INTERRUPT ON

WAIT FOR INTERRUPT

START OVFR (2120)

Figure 11. The program listing of a start-up routine can be compared to a trace list or graph of actual program execution on alogic analyzer

The appropriate variables are set in the Format and
Trace Specifications menus (figures 9 and 10) to
produce a simple trace list beginning at the beginning
of the start-up routine of figure 11. The resultant trace
list, shown in figure 12, begins with the initial
address, 2000g, and contains the next 63 states in
program execution. Twenty lines of state flow are shown
onthe analyzer atatime; the ROLL keys are used to view
the other states of the trace list that are contained in the
logic analyzer memory. A comparison of the trace list
and the program listing confirm that program is execut-
ing properly.

GRAPH OVERVIEW

Another mode of viewing program execution on the
1610A logic analyzer is the graph display. Figure 13is a
graphic display of the first 64 addresses of the startup
routine (figure 11). Each point on the graph corresponds
to one of the 64 addresses (label A). Notice that the
graph limits have been set at 2000 and 3000, the range
of addresses in this routine, which facilitates viewing
and interpretation. The points corresponding to the 20
states shown in the trace list mode are intensified on the
graph display

TRACE LIST...

[]
ocT ocT
@a2009

Q02032 12728

Figure 12. Using the trace specifications shown in figure 10 for
the start-up routine of figure 11 results in a simple, in-line trace
ist of program execution

= emme-TRACE GRAPH, .o TRACE-COMPLETE.
UPPER LIMIT

CRAPHED LABEL
LABEL BASE LA |

LOMER LINIY
fev_un-g

Figure 13. The 1610A graph display of the first 64 addresses

label A) of the start-up routine of figure 11 is bounded by 2000
and 3000, the range of addresses for the routine. Reading from
the left, the first 20 points correspondto

n figure 12, and these points are intensified.

20 states aisplayed

n actual practice it's not always possible to specify in
advance the particular 64 consecutive states that con-
tain a subtle fault that makes a program crash or “gointo
the weeds”. A larger overview is needed. This can be
done by viewing a sample of states, every second state,

every 17th state, or every nth state. For example, figure
14 is a graph of every fifth state of the same program,
giving you an overview of activity across 320 states (5 x
64). The upper limit has been changed to 5100, thus
showing the jump to an output routine at address 5000.
By changing the occurrence count on the trace specifi-
cations you can "compress’ the graph by any ratio from
1.1 to 65 536:1 for a graph of program activity in 64
states to over four million states.

TRACE GRAPH. ...
UPPER LINIT
ot

TRACE-COMPLET

OFF SCALE 0ATa

GRAPHED LABEL [
LABEL BASE

LOMER LymIT

Figure 14. The expanded graph shows a discontinuity as the
program jumps to the output routine at address 5000. Every 5th
state of 320 states is shown as a point of the graph

882946

100373
882122 112380

Figure 15. The trace list of addresses and data shows that the
discontinuity of figure 14 occurs between lines 16 and 17.

MEASUREMENTS FROM GRAPH MODE

Recall that the 20 intensified points carrespond to the
20 states shown in the trace list. Then, by moving the set
of intensified points on the display to center around the
apparent discontinuity in the graph of figure 14, and
switching to the trace list (figure 15), it is clear that jump
takes place after address 02126g, line 16. Since the
graph was every fifth state, the trace specification is
changed to trace all states, centering the trace around
the “suspect” address, and resulting trace list of figure
16 show a detailed state-by-state list around the jump. A
few simple steps can locate a gross error and quickly
narrow the field of investigation to a detailed list of
states around the problem, a powerful set of techniques
for rapid troubleshooting.

MEASUREMENTS ON

SELECTED TYPES OF INFORMATION
Frequently, analysis is greatly simplified if only a par-

ticular type of information is collected. You may have

indications that one 1/Q device is malfunctioning, or a

9azess

Figure 16. Triggering on the point of discontinuity, 0212¢
tracing all states centered on that address, gi
v f states around a prev y
problem area. From the program listing of figure 11, a
'-"5,5 s the stack pointer, and 00500
put addresses

2w of the sequence

idress

Jg aagresses are out-

particular subroutine is suspect. Tracing only one kind of
information is achieved with display qualification. With
display qualification, you select for viewing only those
transactions that are pertinent, which streamlines your
troubleshooting and reduces the size of memory
required for the logic analyzer.

One measurement dependent on display qualification
is verfication that data is correctly writtento the transmit-
ter buffer on the serial 1/0 board. Continuing with the
example of the start-up routine (figure 11), compare the
message transferred beginning at address 2500g with
the display on the terminal as a check on the operation
of the serial I/O system. Changing the trace specifica
tions tatrace only states with addresses of 0025XXg and
setting the 10275A Interface switch to WRITE produces
the trace list of figure 17 which is totally comprised of
‘write" instructions to the transmitter buffer. Comparing
the trace list to the actual terminal display provides a
check on data transmission to that buffer

As another illustration of display qualification, sup-
pose you wished to check only the output routine execu-
tion. In this case, set the Trace specification menu to
trace ONLY STATES 177566g, the address of the
Transmitter Buffer Register on the serial I/O board, and
set the qualifier switch of the 10275A Intertace to
WRITE. The printout of the contents of the logic analyzer

. 082536 aze108

Figure 17. The trace list contains only “write” instructions, and
when compared to the display on the terminal, verifies that the

O

message has been correctly transferred to address 2500

memory (with the addition of the translation of the data
bits to alphanumeric characters) and the terminal dis-
play are shown in figure 18. These two examples are rel-
atively simple applications of the process of display
qualification

Bo-18<mxL<2zrLunumonoh

1Z

w > m
LmEgL-vwcoD

PRESS ANY KEY TO INTERRUPT ME

Figure 18. A column has been added to this 1610A print-out of
atrace list (a) of writes to address 177566g to translate the data
column to alphanumeric code. A comparison of the trace list
and the display on the terminal {b) verify that the output routine
is executing properly

COMPLEX STATE MEASUREMENTS
USING SEQUENTIAL TRIGGERS

Model 1610A Logic Analyzer permits the entry of up to
seven words which must be found in sequence before a
trace is begun. Each of the trigger words may be further
qualified by specifying the number of times that word
must appear {up to 65 536 times) before a search is
made for the next sequence term, or the trace is begun
A sequence restart state may be used to restart the
search for the given sequence of trigger words if the
sequence does not occur before the sequence restart
ward condition. The two common situations which use
these triggering capacities are tracing multipath code or
tracing nested loops.
Tracing Multipath Code. It's a rare minicomputer pro-
gram that doesn't include at least one branching net-
work. In the sample program, the initial address of the
routine that outputs an interrupt message, 2120g, canbe
reached by three paths (figure 19). Suppose you are
only interested in this routine when it occurs following
address 2714g. With sequential triggers, this can be
done simply by listing addresses 2714g and 2120g as
the two terms to be found in sequence. The Trace
Specification menu for this condition is shown in figure
20, and simply lists the two addresses. each occurring
once. The trace list will show the two sequence terms
and list the subsequent states. Should you wish to view the
states occurring between the two sequence terms, change
the Trace Specification menu from START trace mode to
CENTER trace mode. In the trace list shown in figure 21
only four states occurred between the two terms
Obviously, with the option of up to seven trigger words, it
is easy to specify only the branch of interest in almost
any situation.
Tracing Nested Loops. The capability for sequential

PATH A FATHE PATH C

20000

20040

Figure 19. The interrupt message routine at address 2120g
can be entered by any one of three different paths.

triggers is also a convenient feature when analyzing
information which is contained in nested loops. One rou-
tine in the sample program repetitively writes a space
and all 94 printable ASCII characters to the terminal (fig-
ure 22). Each time the major loop, J, occurs, the minor
oop, K, is executed 94 times. For an exercise, consider
how best to trace program execution following the 36th
occurrence of the K loop during the fifth pass of J loop
Most logic analyzers have a trigger delay, i.e. the
number of states to be skipped following the occurrence
of a trigger word. Then, using a little arithmetic, you can
trace the desired portion of program execution by using
a trigger address of 20062g, and a trigger delay of 412
states (4 x 94 + 36) assuming the loops are of fixed
length. A better way is using sequential triggers as
shown in the Trace Specification menu of figure 23. The
1610 Logic Analyzer begins at address 20000g outside
the loops, passes the initial address of the major loop
five times. and then traces program execution after the
address of the minor loop is passed 36 times. Note that
in this case, occurrences of the address of the minor
loop are counted. The resulting trace is shown in figure
24, the count of occurrences of address 20062g is
shown in the right-hand column. The first count, 376 (4 x
94), shows that four complete passes of the major loop
occurred before the 36 passes of the minor loop were
counted. Sequential triggers make it simple to trace
information deep in nested loops of fixed or variable
lengths without the bother and potential errors of using
trigger delay and “simple” arithmetic

TRACE SPECIFICATION s T |

LABEL a 0 0CCUR
BASE oY ocY . OEC

FIND 1IN SEQUENCE
TRACE

SEQ RESTARY (NN

Figure 20. Trace specification for capturing the interrupt mes-
sage output routine following entry from path A, (figure 19)
which includes an address, 2714g, which is unique to path A

wunTRACE LIST TRACE-COMPLETE - ..

A
ocy

2
177566 . .
177366 Q00913
203004

Figure 21. Changing the Trace Specification menu of figure 20
to CENTER trace mode produces a trace list which shows that
four states occurred between the two sequential trigger words
addresses 2714g and 2120g.

transmission. The Trace Specifiation menu (figure 26) is
set to count TIME, and the time count is set to relative
(REL) on the associated trace list (figure 27). Relative
time counts are listed for each state, and each time is
measured between the state and the preceding listed
state. Figure 28 shows the same trace list with an ab-
solute (ABS) time measure, and all times are measured
from zero at the trace point

-w

20030

20036

-
2630 9

Fi
WAIT 150ma l
M

JuTa

20056 1 oUTPUT
CHARACTER

Figure 22. A nested loop contains a minor loop K that is exe-
cuted 94 times in each pass of the major loop

TRACE SPECIFICATION

LABE| A C
BASE oct ¢ 714

FIND IN SEQUENCE W x L
THEN @ ATI
TRACE F

SEQ RESTART (A

Figure 25. An |/O service routine can be evaluated for effi -
ency and correct execution using time measures available on
Model 1610A logic analyzer

--TRACE SPECIFICATION..

LRBEL A
Figure 23. With this Trace Specification, the 1610A captures gase oct o
program activity in the nested loop of figure 22 T T4 ppogauce

THEH
THEN

ERTEER) TRACC
$€0 RESTART (NELS)

TRACE
ool EY=TEl]

LABEL A STATE COUNT
8ASE C ¢ _DEC
B

SEQUENCE
SEQUENCE

STarT count NEIEEED

Figure 26. The Trace Specification menu sets the 1610A to
measure a delay loop and the time required to transmit a char-
acter for the routine of figure 25.

[
¢
8
@
e
®
@
o
e
®
o
L4
e
Q
e
o

1ea373

Figure 24. The Trace Specification menu of figure 23 produces < TRACE LFAY

a trace list of a nested loop Hase oy
SEQUENCE 2082630 . ere3e3
SEQUENCE 202664

SEQUENCE eez674
SEQUENCE a02704
START 3

Y

MEASURING EXECUTION TIME

The count time measure is particularly useful fo
benchmark tests to check for program efficiency. As an
example, the |/Q service rautine shown in figure 25 can
be evaluated using time measures available on Model e B
1610A logic state analyzer. This routine moves a 12-
character string to a buffer, and then moves the charac-

Figure 27. The trace list showing the relative measured times
; - A of execution for the routine of figure 25 shows the elapsedtime
ters one by one to a terminal, with 150 ms between each between sequential states on the display.

LOCATING INTERMITTENT ERRORS

TRACE LIST_—o__ TRACE-CONPLETE L Intermittent errors are some of the most difficult prob-
oer obr & lemsto pinpoint. Results from the error could show up far
- -l a8 downstream from the error, and the original error might

SEQUENCE

be missed. Model 1610A has a Trace Compare mode
which can be applied in situations where an error condi-
tion appears sporadically. First, the likely location of the
error is defined, and a trace is made of a code segment
which is known to be executing properly (figure 29a).
This correct trace is stored in the logic analyzer. The
three choices for subsequent traces, shown in inverse

sesreserssrr e

203002 177366

Figure 28. The absolute time display shows the accumulated - :
S ey T MM LN (R RO o RN video, are OFF, STOP =, or STOP #. Using the “stop if not
transmit time for the complete trace, using the altrigger wo d = == X <

as time zero. equal” (STOP#) operation, so long as a new trace and

the stored trace are the same, the display show only
zeros (figure 29b). Suppose the new trace does not
atch the stored trace (figure 29¢); then the analyzer
halts and the display will contain nonzero numbers (fig-
ure 29d). These numbers, when converted to binary
numbers, specify which binary bits are nonmatching
For example, in figure 294, line 10 is 34g. Converted to
binary, 000034g = 0 000 000 000 000 011 100, and bits
2, 3, and 4 of line 10 of the new trace do not match the
corresponding bits of line 10 of the stored trace list.

~

a
ocT
.902600 . . .
902602
177560
177568
.882604
Q02606
177562
0026180
.Q02612. .
aezé614
802622
202624
.002626. . .
802638
002632
Q02634
.@882480 . . .
002409
802636
202649

TRACE COMPARED TRACE-COMA TRACE COMPARE.. -COMPARED TRACE-C

A A COMPARED
ocT ocT TRACE MODE
(ERIOGTR)

202600 000000
002602 200000
l?ngS 2000000
17756

002604, . . 200000 .
202606 eeee0e
177862 egaeed
002610 200080

. .002612. 220000 . .
8082614 " eeeee0
002616 000034
082620 [-.LLELIL]
.820800. . 022626
020082 | 'e22632
gz0a004 822636
eedeée 002654

. 000068 . . = 002460
a20006 T @22486
ezea1e 022626
ezee12 022652

C a

Figure 29. In Compare Trace mode. using STOP #, a known “good" trace (a) can be repetitively compared with the current trace. When a
subsequent trace matches the stored trace list, the display will show only 0's (b); but, if a newtrace list does not match the storedtrace list(c
the Trace Compare display (d) will contain nonzero numbers for those states not matching

. A

10

TIMING ANALYSIS

Most probiems in a digital system can be located with
techniques that monitor the state flow. However, there is
a subset of problems that are best resolved throughtim
ing analysis. Timing is often the most crucial factor in dif-
ficulties related to handshake sequences, control lines
glitches, clock phasing, and similar problems. To illus-
trate the use of a logic analyzer in timing analysis, three
examples of common measurements are given. For
measurements on control lines and glitch detection
Model 1615A Logic Analyzer is used

ANALYSIS OF TIMING
RELATIONSHIPS OF CONTROL LINES

A system crash always demands immediate attention
and resolution. In this example, each time a programis
started at address 60 000, the PDP-11/04 halts and the
run light goes out. Analysis of both address and contro
lines is required.

The first step is to make the appropriate connections
between the minicomputer and the logic analyzer wa
lower 16 bits of address are assigned to Pods 3 and 2
and, with the wire-wrap board of the 102778B i rnerfan,e
control lines are attached to Pod 1 as follows:

Bit 0 - MSYN
Bit 1 - SSYN
Bit 2 - HLTRQ
Bit 3 - INIT
Bit 4 - BBSY
Bit 5 - NPR
Bit 6 - BR4

Bit 7 - Spare
Like Model 1610A, Model 1615A logic analyzer is set
up with menus. For this problem, the Format Specifica
tion menu of figure 30 and the Trace Specification menu
of figure 31 are used. If the program were executing

FORMAT SPECIFICATION TRACE~-ABORTED
MODE WTEEAE ENEFE uniBus

= ADDRESS

LSB LINES

LABEL SELECT TERERTET

> msB
a

{A.B.C,X>

LOGIC POLARITY ®HI

BUS MSYN H
BUS SSYN H

LABEL SELECT :i_':I:E_E_EjE/
<D, E, %3 .\“ _/BUSHLTROH
M

LOGIC POLARITY ™
BASE WM

BUS BBSY H
— BUS NPR H

BUS BR4 H

SPARE

Figure 30. This format specification allows display of both state
and timing information on Model 1615A Logic Analzyer.

MSYN

58YN

BR4

properly, the sequence of steps would include:
1. 060000 is asserted on the address bus
2. MSYN is set to 1 by the CPU
3. Correct data is set to the data bus
4 SSYN is setto 1 by ROM

5. Data is read by CPU
6. MSYN is set to 0 by CPU

~

SSYN is set to 0 by ROM

Notracelistis generated, soitis apparent that the trigger
condition address 060000, is never met. While still in this
post “crash” state, it could be worthwhile to look at the
state of the control lines. Changing to timing mode and
triggering on any event under label E resutt in the display
of figure 32 showing line 2, HLTRQ (halt request) ling, is
high, which of course, halts the system

" STATE TRIGGERS TIMING ._

THEEE
B8RO

BEE CLOCK SeNS/CLK
FIRST MEMORY TRANSACTION OF THE

TARGET PROGRAM. (SEE TOP FRAME OF
THIS PAGE.)

Figure 31. This trace specification menu will initiate a trace list

the 1615A at first address in the target program, 060000g

TIMING DIAGRAM

EXPAND INDICATOR
GLITCH DISPLAY
MQGNIFICQTION 1

TRACE-COMPLETE

%

SONS/CLK
1us~piv

&
ﬂ
. \H___—- ASSERTED HALT REQUEST
E

BBSY

Figure 32. The timing diagram of control lines after the system
crash shows line 2, HLTRQ (halt request), is high, and a likely
esult of the crash

-

The next puzzie is why the HLTRQ line went high.
Choosing END trace mode and a trigger on HLTRQ will
show what events took place before the line went high.
When the test is run again, the timing display of figure 33
shows the assertion of line 2, HLTRQ, at the far right of
the display. Notice lines 0 (MSYN) and 1 (SSYN); line
MSYN was asserted by the CPU, but a response on line
SSYN was not returned by the memory. Protocol for
PDP-11/04 control lines declares a time-out error if a
MSYN signal is placed on the UNIBUS and an SSYN
response is not made within 20 us. The time-out error
causes the current instruction to be aborted and the pro-
cessor “traps out”. Address 60000 is on a special ROM
memary board which has a hold-off circuit to compen
sate for the access time of the ROM. A likely problem

TIMING DIAGRAM TRACE-COMPLETE

EXPAND INDICATOR 25@NS/CLK
GLITCH DISPLAY SUS/DIV
L o1 =

MAGMIFICATION

Figure 33. When data preceding the crash is collected it is
seen that MSYN (line 0) was asserted, but SSYN (line 1) was
not returned by the memory

TIMING DIAGRAM TRACE-COMPLETE
ExXPaHD IHD
GLITCH D
MAGHIFICAT

Figure 34.. After attaching the spare lead to the ROM hold-off
output and measuring the time with the 1615A curser shows an
elapsed time of 21.8 us, the time line 7 was asserted

BBSY

SPARE

I

source could be that the one-shot RC time constant is
too long. Connecting the spare line input (line 7) to the
one-shot output and repeating the test gives the display
in figure 34. Then the time the one-shot output was
asserted is measured, and the direct time read-out is
21.8 us; this exceeds the time-out limits for the UNIBUS
Reducing the RC time constant in the hold-off circuit
removes the problem, and four steps were all that were
required to identify the problem

GLITCH DETECTION

A glitch is a transient signal, and if it has sufficient
amplitude and duration, it can cause a problemin a sys-
tem. Using the program and setup of the last example,
an analysis will be made of a different problem. In this
illustration, a terminal service routine is interrupt-driven
and is entered by pressing any key on the terminal. The
problem is that each time a key is pressed, the system
halts. To troubleshoot this problem, the setup and
procedures of the preceding example are followed, and,
as before, a display of the quiescent states of the control
lines following the crash show that the HLTRQ line has
been asserted. This time, triggering on the HLTRQ line
and viewing the preceding activity on the controls shows
no abnormal activity on the control lines (figure 35).

A capability for both state and timing analysis is a
particular advantage for troubleshooting problems of
this nature. The sequence of events suggests that a
glitch could be involved, but an error in the software
should not be overlooked. Model 1615A Logic Analyzer
defines a glitch as multiple transitions across threshold
between sampling periods. If a glitch occurs, it appears
as a vertical bar, brighter and wider than the timing lines
and can be easily distinguished even if it occurs at a
timing transition.

For this analysis, the next step is to check activity on
control and address lines before HLTRQ is asserted.

TIMING DIAGRAM TRACE-COMPLETE

EXPAND INDICATOR 3 SBNSCLK
GLITCH DISPLAY
MAGNIFICATION

W
msyn) —LH_J—L_

SSYN

HLTRQ

HLTRQ ASSERTIO

INIT

NPR

BR4

NOTHING ABNORMAL I

Figure 35. Trigger on the HLTRQ line, line 2, and displaying the
activity preceding the assertion of HLTRQ shows no abnorma
activity on the other control lines

12

Thisis done with the Format Specification menu of figure
36 and the Trace Specification menu of figure 37, in
which the timing measure triggers the state measure
and the activity preceding the trigger is to be displayed
The timing diagram shows no abnormal activity on con-
trol lines monitored, but the trace list (figure 38) shows
the addresses of power-fail traps cells, 000024 and
000026, on lines 252 and 253. In normal operation,
whenever the power drops below a specified level,
either the AC LO or DC LO signals (generated by one-
shots) are asserted and the CPU automatically trapstoa
power failure routine at location 000024. For this ex-
ample, the spare line is connected to the AC LO line
The Trace Specification menu is altered to set a time
delay of 15 us to display activity before and after the
trigger on the assertion of HLTRQ. Rerunning the test

FORMAT SPECIFICATION TRACE-COMPLETE
islal 16 BIT 8 BIT
CLOCK SLOPE X3

LABEL SELECT Qﬁﬁhﬂﬁ T

CA.B.C.%) ;W—/
a \. 16 UNIBUS
LOGIC POLARITY XN ADDRESS

LABEL SELECT m
CO.E.X) S——— SAME AS
£ ABOVE

LOGIC POLARITY X3
BASE HEIE

TIMING

Figure 36. A Format Specification menu is set to trace both
state and timing

TIMING w— =R L TN - STATE
(TN TRACE

NEGATIVE
TIME ON
BOTH

{ BUALIFIER IEEEEE

‘..-""—H_-__— TRIGGERS
TRQ(fFf PECIFICATION TRACE-CO TE

L-l:m-l TRACE WiZIE CLOCK E‘-am CLK
E £ -Tide 3
BN DELAY
L OFF 1 ASYNCH
L__OFF 3 TRIGGER
AND GLITC DURAT 1ON

ON AMY 0 > 15HS N

Figure 37. The Trace Specification menu sets the timing to
trigger the state meas..'a'ﬂam, and putting the trigger at the
END of the trace, collects and displays activity occurring before
the HLTRQ line is asserted.

and viewing the timing diagram shows (figure 39} that a
power-fail signal does appear on the AC LO line.
Moreover, this signal appears only after the interrupt
from the terminal and coincides with the bus request for
interrupt on the BR4 line (line 6). The two signals are of
unequal duration, which suggests they are related, but
not tied together. Two likely causes are (1) a wiring error
across the path of the one-shot or (2) a glitch on the
input to the AC LO one-shot. Since the latter problem
is more likely, another line is assigned to the input of the
one-shot. Line 5, NPR, is used because this channel has
been inactive in the previous measurements. Then, the
Trace Specification is set to trace a glitch on line 5
which is now the input of the one-shot. This timing dia-
gram (figure 40) shows a glitch on the input to the power-
fail circuitry which occurs at the same time as the
interrupt signal from the terminal on line 6. A more
detailed view (figure 41) is gained using the times ten

TRACE LIST TRACE-COMPLETE

LINE
NO

=31
242

600000
000000
@az276
002274
800060
080062
eaz272
092270
000024
28e0aze
200600
ERRRREE]

Figure 38.The trace list associated with the iming diagram of
figure 37 cm ws the power fail trap cells on lines 252 and 253.

—time | time

TIMING DIAGRAM

EXPAND INDICATOR
GLITCH DISPLAY
MAGHIFICATION

t TRIGGER L

. EVENT - +J_” m_”_Lm
s m : TN

———¢
HLTRQ

TRACE-COMPLETE
25ONS-CLK
SuUs DU

MSYN

INIT

BBSY

NPR

BR4

ACLO g

DELAY 15 .SEC ["® -

4

- e —
Figure 39. The timing diagram shows that a power-fail signal
was asserted on AC LO.

(X10) magnifier, confirming the concurrence of the
glitch and the interrupt signal. In this example a capaci
tive coupling of the two lines causes the glitch, and con-
sequently, the system halt. The problem can be
corrected on the PC board. The interactive use of time
and state traces reduces a complex problem through a
short series of logical steps, each more narrowly defin-
ing the range of likely problem sources

TIMIHG DIAGRAM

EXPAND INDICATOR
GLITCH DISPLAY
FMAGHIFICATION =

.imwm

L

E 0 O @®
"

Figure 40.The timing diagram shows a glitch online 5, which is
now the trace of activity of the input to the e-shot

TIMIHG DIAGRAM TRACE-CONPLETE

Mfgﬁ
GLITCH DISPLAY
MAGHIFICATION m ﬁ]

Figure 41.A magnification (X10) of the timing diagram of figure
40 confirms that the glitch on the AC LO line (line 5) coincides
with the assertion of the interrupt signal from the terminal on the
BRA4 line (line 6

ASYNCHRONOQUS MEASUREMENTS
WITH A LOGIC STATE ANALYZER

The first two examples of timing analysis used Model
1615A which performs both state and timingtraces. The
first problem, a time-out problem could also have been
resolved using state flow with a Maodel 1610 Logic
State Analyzer

The 10 MHz oscillator output of the 1610 is used to

13

clock data into the logic analyzer and the Format Speci-
fication of figure 42 is set. Variables to be traced include
the address (in octal base) under label A, and seven
control lines in binary base, including:

MYSN (label B) HLTRQ (label E)

SSYN (label C) ACLO (label E)

BR4 (label D) BBSY (label F

INTR (label D
The Trace Specification menu (figure 43) is setto follow
the sequence that should occur beginning with address
60 000. The trace that results (figure 44) shows that
address 60 000 is on the address bus, but when MSYN
(label B) is asserted, the correct response on the SSYN
line (label C) does not occur, and the third term of the
sequence of triggers is not satisfied. Changing the Trace
Specification, and placing an X (don't care) in the
sequence where SSYN originally appeared, and using a

Flgure 42.The Format Specification assigns channel labels for
the address and control lines of interest. The address is
assigned octal base, and the control lines are in binary base

SSYN

---TRACE-ABORTED

A 8 FOGet
0CT BIN 8 N SIN EIN BIN o

FIND IN SEQUENCE SR 0 ¥ SR
160800 g | d g oo
60008 & N X reen
Thace [RTEE : § o

SEQ RESTART (HDNGE
RETURN OF
\“_ SSYN

ASSERTION OF MSYN

Figure 43. The Trace Specification rigidly follows the
sequence of event that should occur at address 60000.

14

A 8 L 0 B F
ocrT BIN BIN B8IN BIN BIN
0ceaoe. . ¢.. 6. 00.. 00

SEQUENC @6e20d 1 @ 0@ 9@
SEQUENCE
START 2

<91 i

i \u...,____“_ MSYN ASSERTED
2 $SYN NOT RETURNED?

Figure 44. The trace list shows that SSYN was not returned in

response to MSYN at address 60000.

TIME count, produces the trace of figure 45. Onthe third
line of the trace, the last of the sequence terms, the re-
lative time count is 21.3 us. But this exceeds the 20 us
limit of the UNIBUS, and using the same logic as was
used in the first example with Model 1615A Logic Ana-
lyzer again leads to the deduction that the one-shot RC
time constant on the SSYN hold-off circuit is set too long
The time measures and internal clock make the Model
1610A Logic State Analyzer adaptable to timing analysis
as well as state flow analysis

TRACE LISToeccaannon- ~TRACE-COMPLETE. ..

a 8 B? DN B § TéHE

BASE 0CcT BIN BIM 1 EC
-l

SEQUENCE e6v02e
SEQUENCE
START

i

ittt e e e m G

+01
+@2

[T P SUOU U SRUP- -y
SRR RO DR S B -

eaz249

TIME MSYN WAS
ASSERTED BY CPU

Figure 45. The trace | :.' with a time measurement shows that
MSYN is asserted for 21.3 us

SUMMARY

The real-time analysis capabilities of logic analyzers
make them excellent tools for troubleshooting minicom-
puter systems. Analysis is even further simplified by
adding the appropriate interfaces for easier connections
and preprocessed signals. Logic analyzers can be used
with synchronous and asynchronous minicomputer
architectures. Examples show the advantages of adding
logic analyzers to your set of troubleshooting tools for
both state and timing analysis in minicomputer systems.

APPENDIX: MINICOMPUTER INTERFACE DESIGN CONSIDERATIONS

The design of a minicomputer interface begins with
a fairly good knowledge of the particular bus to be
analyzed. In the typical minicomputer there are usually
16 bits of address, 16 bits of data. and up to 30 or
more control lines with data transfers occurring at rates
varying between 100 kHz and 10 MHz. This plethora
of information must somehow be interfaced to the input
requirements of the logic analyzer and in such afashion
as to be easily understood by the user. The design mus
take into consideration such things as clock ger‘eratlar\.,
qualifiers, data timing, bus loading, and general logic
analyzer requirements

Generation of a clock to the analyzer usually req quires
ORing several control lines together for capturing all
transactions on the bus. Figure A-1 shows the simple
case of two separate control lines being ORed together
The delay line provides for the minimum clock pulse
width requirement of the logic analyzer to be satisfied
A more typical example of clock generation is shown in
figure A-2 where the data-in pulse must be delayed in
order to satisfy the data setup time of the logic analyzer

Since logic analyzers are typically up to 36 bits in
width, it is useful to generate transaction qualifiers

Ve =N

MULTIPHASE ORed. QUALIFIED CLOCK

QUALIFICATION ON CONTROL
LINES (READ, WRITE. ETC.)

DETERMINES WHICH STROBE
GENERATES A CLOCK TO THE
ANALYZER.

!

cw
i :u-l. "lk"J "

] ‘-\:r".—v—-

! e

'_I‘l—'-" :;ﬁ;:au

I |
Hr=3a "‘I
=
ain 4 DELEY L —
! AnHIAPNY "l\.
e P
Mm%
_K 04T OUT .\""
prmome sl |
ETROEE B I
Figure A-1. A simple case of generating a clock signal for the
logic anatyzer ORs two control lines and adds a sufficient delay
to meet the minimum clock pulse width requirement of the
. analyzer B

15

'd B such as read/write, DMA, memory refresh, etc. This
I.)|T_-w.,.. requires circuitry to decode the transaction type and
then to optionally inhibit the associated clock to the
analyzer on the basis of some switch setting on the
[interface. In this manner, only transactions of a certain
ek af— QUALIFICATION ON CONTROL type will be captured or excluded for analysis without

STROBE B LINES (READ. WRITE, ETC.) by Ll i :
DETERMINES WHICH STROBE the need for additional channels for qualification. This

GENERATES A CLOCK TO THE
ABAL TN, data reduction decreases the number of states to be
analyzed to locate the desired state. Figure A-3 shows
ouAL 1 some sample bus signals and circuitry for decoding
the transactions.

ol Data on the bus can be transferred in either a
synchronous or an asyncronous manner, depending
& upon the minicomputer.* In most synchronous ma-
lerocn 1o chines there are two buses, one for memory and a
- slower bus for 1/0. In this case, the two buses have
to be multiplexed together (figure A-4) in order to
maintain time relationships in the list display and to
accommodate the logic analyzer data width. Either bus
type might incorporate a multiplexed address/data bus.
With a multiplexed bus, the address is first placed on
the bus and then some time later the data is placed on
the bus (figure A-5). This requires a latch to demul-
tiplex the bus such that address and data are presented
synchronously to the logic analyzer. When latching the
e bus, it is necessary to check setup and hold times of

: of the logic analyzer.
i : *For more detailed discussion of these two architectures refer
|

T MULTIPHASE ORed. QUALIFIED CLOCK

back to the main text, “Minicomputer Architectures.”
I
STROBE B 1 5
T = i MULTIPLEXING MULTIPLE BUSES
Figure A-2. A typical case of generating a clock signal for the 2
logic analyzer adds delay to the data-in pulse to satisfy the > :
minimum setup time required by the analyzer. /0 BUS
Py o L DATA TO
" ANALYZER
MUX
s N MEMORY BUS > i
o SEL A
— ADDRESS < ADDRESS S
Aw—0uoUI |
10 QUAL a
DATA STROBE f |
a
1/O CLOCK "
R PROCESSED
MEMORY STROBE
RO CLOCK TO
,5.,_m_ ANALYZER CLOCK TO
! ANALYZER
L
R STROBE —ex
R
b J, DELAY
Figure A-3. The bus signals in this example (a) can be -)
decoded for a logic analyzer with the appropriate circuitry (b)to Figure A-4. Systems which operate synchronously often use
preprocess signals 1o the analyzers. two buses, a memory bus and a slower /O bus.

_ e L i

16

the bus with respect to the address clock and the latch.

The minicomputer interface should ideally present a
load to the bus that is less than, or equal to, the
manufacturer's recommended specifications, both DC
and AC. The DC input requirements of bus receivers are
given in the IC manufacturer's data sheets, AC loading
specs imply that the bus receivers should be located as
close as possible to the edge connector to minimize
stray capacitance.

There are several additional requirements of the inter-
face for the logic analyzer. First, good probe grounding
is necessary to maintain data integrity from the inter-
face to the probe. This entails separate grounds for
each probe brought back to the minicomputer bus for
limiting ground loop problems. Analyzers also have
specifications for minimum clock pulse width and mini-
mum clock period. Also, data presented to the probes
has a setup and hold time with respect to the clock.
Table A-1 lists some of these specifications for HP's
family of logic analyzers.

-

OEMULTIPLEXING A MULTIPLEXED BUS

PROCESSED
ADDRESS STROSE

ADDRESS TO ANALYZER

Bus } == 2k DATA TO ANALYZER

DAFA s!n.'Logg . 3 CLOCK TO ANALYZER

T

>l< I
| ADDRESS xﬂ\"
i
b ADDRESS
STROSE
DATA
STROBE

Figure A-5. The information on a muiltiplexed bus must be
preprocessed for the logic analyzer (a) to demuitiplex data

_ transmitted between addresses (b).

Table A-1. Specifications for HP Logic Analyzers.

W IAG

A ciciaro

HP APPLICATION NOTES - DATA DOMAIN MEASUREMENTS

167-4 Engineering in the data domain calls for a new kind of
digital instrument. (Reprinted from Electronics Magazine.)

167-5 Troubleshooting in the data domain is simplified by logic
analyzers. (Reprinted from Electronics Magazine.)

167-6 Mapping, a dynamic display of digital system operation.
167-7 Supplementary data from map displays without

changing probes.

167-9 Functional analysis of the Motorola M6800 micro-
processor system.

167-11 Functional analysis of Intel 8008 microprocessor systems.
167-12 Functional analysis of Fairchild F8 microprocessor systems.
167-12A Functional analysis of MOSTEK F8 micro-

processor systems.

167-13 The role of logic state analyzers in microprocessor

based designs.

167-14 Functional analysis of 8080 microprocessor systems.
167-15 Functional analysis of Intel 4004 microprocessor systems.
167-16 Functional analysis of intel 4040 microprocessor systems.

167-17 Functional analysis of National IMP microprocessor systems.

167-18 Functional analysis of National Semiconductor SC/MP
microprocessor systems.

167-19 Systematic “turn-on” of microprocessor systems using
logic state analyzers.

233-1 Functional analysis of Signetics 2650 microprocessor
systems using the 1610A.

233-2 Functional analysis of TMS 9900 microprocessor systems
using the 1610A.

¢

233-3 Functional analysis of Z80 microprocessor systems using
the 1610A.

233-4 Functional analysis of 8080 microprocessor systems using
the 161CA.

233-5 Functional analysis of 6800 microprocessor systems using
the 1610A.

260-1 Understanding Hewlett-Packard's Model 1615A

Logic Analyzer.

275 Symptomatic troubleshooting of computer networks

with HP 1640A.

275-1 Using the HP 1640A Serial Data Analyzer with the

Epitape Recorder.

275-2 Using the HP 1640A Serial Data Analyzer with the Spectron
Corp.T-511 Recorder.

280-1 Making Complex Measurements with the HP Model 1602A
Logic State Analyzer.

280-2 Monitoring the IEEE-488 Bus with the 1602A Logic

State Analyzer.

280-3 The 1602A Logic State Analyzer as an Automatic

Test Instrument.

280-4 Using 1602A's for measurements on wide buses in manual
and automatic modes.

292 Minicomputer analysis techniques using logic analyzers.
293 Functional analysis of microprocessor systems with the
1611A Opt 001 General Purpose Module. ’

HEWLETT
PACKARD

For more intormation, call your local HP Sales Office or nearest Regional Office: Eastern (301) 258-2000. Midwestern (312) 255-9800: Southern (404) 955- 1500, Western (213)877-1282: Canadian
(416) 678-9430. Ask the operator for Instrument Sales. Or, Write: Hewleti-Packard. 1501 Page Mill Road, Palo Alto, CA 84304. In Europe: Hewlett-Packard SA.. 7. rue du Bais-du-Lan, P.O. Box
CH-1217 Meyrin 2. Geneva. Switzerland. In Japan: Yokogawa-Hewlett-Packard Lid.. 29-21. Takaido-Higashi 3-chome, Suginami-ku. Tokyo. 168.

5953-2704 AUG, 1979

PRINTED IN US.A.

