
Optimizing Remote Measurement
Speed for the Agilent 8614xB Series
of Optical Spectrum Analyzers
Product Note 86140-3

2

It has long been known that using automated test equipment (ATE) is a great
way to speed up testing times and thereby reduce overall manufacturing
time, increase production volume, and reduce cost of test. Firmware versions
B.04.00 and later of the Agilent 8614xB series of Optical Spectrum Analyzers
(OSA) contain two features that increase ATE speed even more. First, the
front panel display of the OSA can now be turned off during remote operation.
This feature provides a significant improvement in the measurement speed
of the instrument, as processor power is no longer used to update the display.
Second, a GPIB command buffer can be enabled so that the OSA will behave
like most other GPIB instruments and accept several commands in quick
succession. This feature will remain disabled by default so that programs
written for firmware version prior to B.04.00 will be fully compatible with
the newer versions of the OSA firmware. With these improvements, overall
program execution times can be reduced on the order of 30 to 50 percent.
Individual results will vary, however, due to such factors as application, the
controller and GPIB hardware, and specific commands used.

Constantly updating the OSA display uses up a significant amount of computing
power and slows down the instrument. Changing almost any setting or
running any operation changes the instrument display. If the OSA display is
turned off, this step is eliminated and measurement speed is greatly
increased. In OSA firmware versions B.04.00 and later, a single command,
DISPlay[:WINDow[1]] OFF, can turn off the display and greatly increase the
overall speed of the instrument in almost all remote operations. The display can
easily be re-enabled by sending the inverse command, DISPlay[:WINDow[1]]
ON, or by pressing the front panel Local button. The process of switching the
display on or off usually requires between 10 and 15 seconds, but this is
easily recouped in the time saved from disabling the display.

Several common processes were simulated and tested to measure the time
saved by turning off the display. A description of each of these tests can be
found in Appendix A, the test program source code can be found in
Appendix B, and a full description of the test set up and equipment used can
be found in Appendix C. Table 1 lists the average of 10 test times with the
display both enabled and disabled for each of these processes. It also lists
the absolute and percentage time saved for each process. The percentage
time saved is calculated by dividing the absolute time saved by the test time
with the display enabled. Notice that these results have a very low standard
deviation meaning that they are highly repeatable.

“Display-off”
Operation Mode

3

Table 1. Test Statistics

Average Standard Absolute Percent
Display Test Time Deviation Time Time

Test Setting (ms) (ms) Savings (ms) Savings

Reset ON 3875.3 117.3 2046.7 52.81%

OFF 1828.6 21.1

AutoMeasure ON 14005.2 195.0 5268.8 37.62%

OFF 8736.4 153.7

AutoAlign ON 28340.8 168.5 9189.3 32.42%

OFF 19151.5 65.9

Zoom ON 5006.2 112.8 1908.1 38.11%

OFF 3098.1 113.9

Bandwidth ON 9282.4 148.5 3882.4 41.83%

OFF 5400 104.6

Markers ON 4466.5 225.5 2250.4 50.38%

OFF 2216.1 121.5

Integration ON 7213.3 188.6 3462.0 47.99%

OFF 3751.3 23.2

SMSR ON 9340.3 134.4 4082.1 43.70%

OFF 5258.2 168.6

OSNR ON 19910.5 193.9 9188.0 46.15%

OFF 10722.5 161.5

Trace Download ON 1070.5 116.1 512.8 47.90%

OFF 557.7 12.7

Function ON 6119.7 161.1 3418.8 55.87%

OFF 2700.9 38.0

Figure 1. Program Execution Times with Display On and Off

Ti
m

e
(m

s)

Average Test Time

Test

Disp On
Disp Off

30000

25000

20000

15000

10000

5000

0

Rese
t

AutoMeasu
re

AutoAlig
n

Zoom

Bandwidth

Marke
rs

Integratio
n

SMSR
OSNR

Tra
ce Download

Fu
nctio

n

4

Versions of the 8614xB OSA firmware before B.04.00 allow only one command
to be sent to the OSA at a time. If a second command is sent before the first
is finished, the GPIB bus will simply hang until the first command is finished
at which point the second command will be read by the instrument. The
reason behind this is that GPIB relies on a three-wire handshaking system
between the controller and the instrument to ensure proper communications.
The OSA keeps one of these control lines, the NRFD (not ready for data) line,
high until it finishes with each command. This means that the controller is
unable to send any more commands until the OSA is finished with that
command and the controller will be unable to send multiple commands in
quick succession. This also prevents the controller from communicating with
any other instruments on the bus while the OSA is processing a command.

The advantage is that there is no need for program synchronization because
commands cannot be executed out of sequence, as only one command is
processed in the OSA at any given time. The disadvantage to this approach
is that overall program speeds are decreased as the controller is held up as
the OSA processes each command.

The command buffer in the 8614xB firmware after version B.04.00 allows the
instrument to receive several commands in quick succession without having
to worry about tying up the bus. Each command is placed in the buffer as it
comes in and the NRFD bit remains low. Figure 2 illustrates this process.
For example, if a high-resolution sweep is being performed, the commands
that perform the data calculations can be sent before the sweep is completed.
The disadvantage is that the program now requires synchronization to ensure
that operations occur sequentially. Again, synchronization is only required
with the buffer. In the example above, the data calculations may be attempted
before the sweep is completed, but they will not be performed correctly.

Synchronization can be accomplished by several different methods. The
simplest is to use the *OPC? (operation complete) query. This query will
return a “1” when the most recent operation is complete. If the controller is
set up to wait for this response, it will not send the next command until the
instrument has completed all of its previous tasks. Another simple command
is *WAI (wait). If this command is sent to the OSA, it will wait until all of
the present tasks are completed before continuing on to the next command.
This eliminates the need for the controller to wait for any response from the
instrument.

The command buffer is enabled using the command SYSTem:COMMunication:
GPIB:BUFFer ON. Similarly, it is disabled with the command SYSTem:
COMMunication:GPIB:BUFFer OFF. With the buffer disabled any existing
8614xB code will perform exactly as it did with the versions of the firmware
B.03.01 and earlier. The command buffer is disabled by default so it must be
enabled at the beginning of any program in which it is utilized.

GPIB Command Buffer

5

Figure 2. OSA Command Buffer Modes

This firmware upgrade is free to any OSA owner and can be downloaded or
ordered from www.agilent.com or contact your local sales office for more
details.

For more information refer to the following:
8614xB User’s and Programmer’s Guide (part number 86140-9000)

GPIB Bus GPIB Bus

Command 1

Controller
(PC) OSA

Controller
(PC)

Command Buffer

Command 1

Command 2

OSA

Buffer Disabled
(and OSA firmware before B.03.01)

While the first command is being processed
by the OSA, the NRFD bit is set high, which
prevents any further commands from being
sent over the bus.

With the command buffer, other commands are
free to move to the OSA and other instruments
on the bus even while the OSA is processing
the first command.

Buffer Enabled

Instrument
2

Instrument
2

Command 3

Command 3
Command 2 NRFD

6

Appendix A - Test Descriptions

Command Used *RST Resets the instrument

Average Test Time 3875.3

(Display On) - ms

Average Test Time 1828.6

(Display Off) - ms

Percent Time Saving 52.81%

This test was a simple one-command instrument preset. The only command
used is the IEEE 488.2 required command *RST.

Command Used DISP:WIND:TRAC:ALL:SCAL:AUTO AutoMeasure

Average Test Time 14005.2

(Display On) - ms

Average Test Time 8736.4

(Display Off) - ms

Percent Time Saving 37.62%

The AutoMeasure command, the only one used in this test, automatically
scales the instrument display to encompass the largest input source and places
a marker at the peak power. This command actually changes many settings
and performs multiple operations, so despite the fact that AutoMeasure is
designed mainly for front panel operation, it serves as a good benchmark of
general instrument use.

Command Used CAL:ALIG:AUTO AutoAlign

Average Test Time 28340.8

(Display On) - ms

Average Test Time 19151.5

(Display Off) - ms

Percent Time Saving 32.42%

AutoAlign aligns the monochromator output with the photodetector at the
wavelength with the highest power. This is an important procedure to perform
each time that the OSA has been moved, subject to large temperature change,
or after warm up. Even though this procedure deals primarily with the
optics of the instrument, there is still a significant time savings from disabling
the display. The time savings from a single AutoAlign almost offsets the time
used to disable the display.

Test 1 - Reset

Test 2 - AutoMeasure

Test 3 - AutoAlign

7

Commands Used INIT:IMM Run a single sweep

CALC1:MARK1:MAX Marker to peak power

CALC1:MARK1:SCEN Marker to center

SENS:WAV:SPAN 10nm Set the wavelength span

CALC1:MARK1:X? Get marker wavelength

CALC2:MARK1:Y? Get marker amplitude

Average Test Time 5006.2

(Display On) - ms

Average Test Time 3098.1

(Display Off) - ms

Percent Time Saving 38.11%

The zoom test finds the peak power, zooms in on it, runs another sweep on
that small area, and finally retrieves the coordinates of that point. This test
is based on Example 2 in the 8614xB User’s manual. This test updates the
display several times so there is still significant improvement realized by
disabling the display.

Commands Used SENS:WAV:STAR 1530NM Set start wavelength

SENS:WAV:STOP 1570NM Set stop wavelength

SENS:POW:DC:RANG:LOW –60DBM Set sensitivity

INIT:IMM Take sweep

CALC1:MARK1:MAX Marker to peak

CALC1:MARK1:SCEN Marker to center

CALC1:MARK1:X? Read marker wavelength

CALC1:MARK1:Y? Read marker amplitude

SENS:BWID:RES 0.1 NM Set resolution bandwidth

SENS:WAV:SPAN 2NM Set span

CALC1:MARK1:FUNC:BWID:NDB –20.0DB Select dB down where

BW is calculated

CALC1:MARK1:FUNC:BWID:INT ON Enable BW marker

interpolation

CALC1:MARK1:FUNC:BWID:READ WAV Sets the BW unit of

measurement to WL

CALC1:MARK1:FUNC:BWID:STAT ON Enable bandwidth

marker

CALC1:MARK1:FUNC:BWID:RES? Returns axis values

between markers

Average Test Time 9282.4

(Display On) - ms

Average Test Time 5400.0

(Display Off) - ms

Percent Time 41.83%

Saving

Test 4 - Zoom

Test 5 -
Bandwidth Measurement

8

Commands Used SENS:WAV:STAR 1480nm Set start wavelength

SENS:WAV:STOP 1580nm Set stop wavelength

INIT:IMM Run a single sweep

CALC:MARK:X:WAV 1480nm Sets the marker position

CALC:MARK:Y? Reads the marker amplitude

Average Test Time 4466.5

(Display On) - ms

Average Test Time 2216.1

(Display Off) - ms

Percent Time Saving 50.38%

The markers test repeatedly moves a marker along a trace and reads back the
amplitude at the given frequency. This is similar to downloading a 10-point
trace, but is meant to demonstrate the time saved in the common application
of moving markers. This test had one of the highest time saving ratios.

Commands Used INIT:IMM Take a single sweep

CALC1:MARK1:MAX Marker to peak

CALC1:MARK1:SCEN Marker to center

CALC:MARK1:SRL Marker to reference level

CALC:MARK1:STAT OFF Turn marker 1 off

SENS:WAV:SPAN 10NM Set the span

SENS:BWID:RES 5NM Set resolution bandwidth

CALC1:TPOW:STAT 1 Turn the total power state on

CALC1:TPOW:DATA? Query the total power

Average Test Time 7213.3

(Display On) - ms

Average Test Time 3751.3

(Display Off) - ms

Percent Time Saving 47.99%

The integration test is meant to simulate finding the total power of an input
source. The test first centers the display on the highest power peak, then
runs a low-resolution sweep over the immediate area around that peak power.
Because the display is changed several times during this process and the
total power must be calculated, turning off the display yields a significant
time savings.

The bandwidth test measures the bandwidth of the input source. This test is
based on Example 3 from the 8614xB User’s manual and builds on Test 4.
It essentially focuses in on the peak power and then repeats the sweep at a
very fine resolution bandwidth to increase the accuracy of the bandwidth
measurement. The small amount of math involved in calculating the bandwidth
is responsible for the slight increase in the amount of time saved over Test 4.

Test 6 - Markers

Test 7 - Integration
(Total Power)

9

Commands Used SENS:WAV:CENT 1550nm Set center at 1550 nm

SENS:WAV:SPAN 20nm Set span to 20 nm

INIT:IMM Take a single sweep

CALC:MARK:MAX Place marker one at Max

CALC:MARK:SCEN Set marker to center

CALC:MARK:SRL Set the marker to

reference level

SENS:POW:DC:RANG:LOW –61DBM Set the sensitivity to

–61 dBm

CALC:MARK1:Y? Get the peak amplitude

CALC:MARK1:MAX:NEXT Set marker one to the

next highest peak

Average Test Time 9340.3

(Display On) - ms

Average Test Time 5258.2

(Display Off) - ms

Percent Time Saving 43.70%

The SMSR test is designed to use all of the commands in calculating the side
mode suppression ratio on a laser source. The test centers on the largest
signal, finds the peak power, and then determines the strength of the next
highest peak. Calculating SMSR is a matter of dividing the first result by the
second. This test is based on Example 10 in the 8614xB User’s manual.

Commands Used SENS:WAV:CENT 1550nm Set center at 1550 nm

SENS:WAV:SPAN 10nm Set span to 10 nm

INIT:IMM Take a single sweep

CALC:MARK:MAX Place marker one at Max

CALC:MARK:SCEN Set marker to center

CALC:MARK:SRL Set the marker to reference level

CALC:MARK2:MIN:LEFT Find the local minimum to the left

CALC:MARK3:MIN:RIGH Find the local minimum to the right

CALC:MARK1:Y? Get the peak amplitude

CALC:MARK2:Y? Get the left pit amplitude

CALC:MARK3:Y? Get the right pit amplitude

CALC:MARK1:X? Get the peak wavelength

CALC:MARK2:X? Get the left pit wavelength

CALC:MARK3:X? Get the right pit wavelength

Average Test Time 19910.5

(Display On) - ms

Average Test Time 10722.5

(Display Off) - ms

Percent Time Saving 46.15%

Test 8 - SMSR (Side Mode
Suppression Ratio)

Test 9 - OSNR (Optical
Signal to Noise Ratio)

10

The OSNR test uses commands that are needed to calculate an optical signal
to noise ratio using the interpolation technique. This involves finding the
peak of the source, then finding the minimums on either side. The noise
level is calculated by fitting a line to the two minimums and then finding the
value of that line at the wavelength of the peak. The real time savings of
having the display off for this test is over nine seconds. The high level functions
CALCulate:FUNCtion:OSNR:STATe ON and CALCulate:FUNCtion:OSNR:RESult?
can also be used and will correct the result for the noise bandwidth for a single
channel. The DWDM application can be used to calculate OSNR for several channels.

Commands Used SENS:SWE:POIN 101 Set trace length to 101

INIT:IMM Take sweep

FORM REAL Set data format to real

TRAC:DATA:Y? TRA Request data

Average Test Time 1070.5

(Display On) - ms

Average Test Time 557.7

(Display Off) - ms

Percent Time Saving 47.90%

The trace download test acquires a trace and then downloads it. Often times
it is faster to download the entire trace and perform data calculations on the
PC than it is to rely on the OSA to perform the measurements. Many PC
processors are simply faster than the processor in the OSA. With the display
turned off, the trace was acquired and retrieved in just over one-half second.

The function test normalizes one trace relative to another. This test is based
on Example 7 in the 8614xB User’s manual. First three traces are turned on
and acquired, then one is frozen as the reference, and finally the third is defined
as the ratio of the first two. Since this process is graphic and calculation intensive,
this test resulted in the greatest time saved as a percentage of any of the tests.

Test 10 - Trace Download

Test 11 - Function Commands Used SENS:BWID:RES 10NM Fix resolution BW

INIT:IMM Take a single sweep

TRAC:FEED:CONT TRA, ALW Continuously update trace A

DISP:WIND:TRAC:STAT TRB,ON Turn on trace B

TRAC:FEED:CONT TRB, ALW Continuously update trace B

DISP:WIND:TRAC:STAT TRC,ON Turn on trace C

TRAC:FEED:CONT TRC, ALW Continuously update trace C

TRAC:FEED:CONT TRB,NEV Freeze trace B

INIT:CONT ON Set up continuous sweep

CALC3:MATH:EXPR (TRA/TRB) Normalize trace A to B

CALC3:MATH:STAT ON Turn on normalization

Average Test Time 6119.7

(Display On) - ms

Average Test Time 2700.9

(Display Off) - ms

Percent Time Saving 55.87%

11

Appendix B - Test Source Code

/*==
Program: OSA benchmark
Author: Agilent Technologies, LWD
Start Date: 13 April 2001
Last Modified: 17 April 2001
Description: This program will be used to benchmark the 86145B in ‘display off’ remote operation versus

‘display on’ operation

procedures tested:
AutoAlign
AutoMeasure
Reset
Zoom
BW
Trace download
Trace Function
SMSR
OSNR
Marker
Integrate

Note: This program includes a simple user interface which was meant primarily for use during the development
process.

==*/
//libraries
#include <windows.h> //windows library, required for GPIB/ENET interface
#include <stdio.h> //standarad io library
#include <stdlib.h> //standard C++ library
#include <decl-32.h> //GPIB header
#include <time.h> //time funcitons

//constants
#define FILENAME1 “c:\\my documents\\projects\\OSA bnechmark\\data.txt”
#define MAX_DATA 10 //the maximum number of tests allowed
//interface parameters
#define BDINDX 0 // Board Index
#define PRIMARY_ADDR 23 // Primary address of device (default)
#define SECONDARY_ADDR 0 // Secondary address of device
#define TIMEOUT T30s // Timeout value = 30 seconds
#define EOTMODE 1 // Enable the END message
#define EOSMODE 0 // Disable the EOS mode

//Prototypes
int which_test(); //done
int get_repeat(); //done
int get_display_setting(); //done
int setup_coms(int DisplaySetting); //done
void run_tests(int instr, int repeat, int test, int *data); //done
void pre_test(int instr); //done
int test_AutoAlign(int instr); //done
int test_AutoMeasure(int instr); //done
int test_reset(int instr); //done
int test_zoom(int instr); //done
int test_BW(int instr); //done
int test_trace(int instr); //done
int test_function(int instr); //done

12

int test_SMSR(int instr); //done
int test_OSNR(int instr); //done
int test_markers(int instr); //done
int test_integrate(int instr); //done
void clean_up(int instr); //done
void log_data(int data[], int repeat, int test, int dispOn); //done
void write_IO(int instr, char cmd[], int size); //done
void read_IO(int instr, char rspns[], int size); //done
void Error_Code(char desc[]); //done
void get_test_name(int test, char *name); //done
void run_again(); //done
// void main() //done

/*==
Function: Main
Description: The main function controls program and data flow
Inputs: none
Outputs: none
==*/
void main(){

//declarations
//int test; //a number specifying which test to run
//int repeat; //the number of times to repeat the test
//int display; //specifies whether the display is on or off
int OSA; //specifies the OSA
int data[MAX_DATA]; //an array for the time data and a pointer to it

//test = which_test(); //retrieve which test to run
//repeat = get_repeat(); //retrieve the number of repetitions
//display = get_display_setting(); //retireve the display setting

//automatically try each test the maximum number of times for (int Disp = 0; Disp <2; Disp++){
OSA = setup_coms(Disp); //set up the OSA
for(int test = 1; test < 12; test++){

printf(“Test: %d, Disp: %d Run: “,test,Disp);
run_tests(OSA, MAX_DATA, test, data); //run the tests
log_data(data, MAX_DATA, test ,Disp); //log the data to a test file

}//for(i)
}//for (j)

clean_up(OSA); //close communications
printf(“\nProgram complete!!\n”); //status report

//run_again(); //ask the user if they want to re-run the program

}// main()

13

/*==
Function: which_test
Description: The which_test function queries the user for a number specifying which test to run
Inputs: (none)
Outputs: int - number specifying the desired test

1 - Reset
2 - AutoMeasure
3 - AutoAlign
4 - Zoom
5 - BW meausrement
6 - Markers
7 - integrate
8 - SMSR
9 - OSNR
10 - Trace download
11 - Function

==*/
int which_test(){

//declarations
int tmp = 0; //holds the user response

//prompt the user
printf (“Which test should be run?\n”);
printf (“ 1. Reset\n”);
printf (“ 2. AutoMeasure\n”);
printf (“ 3. AutoAlign\n”);
printf (“ 4. Zoom\n”);
printf (“ 5. BW Measurement\n”);
printf (“ 6. Markers\n”);
printf (“ 7. Integrate\n”);
printf (“ 8. SMSR\n”);
printf (“ 9. OSNR\n”);
printf (“ 10. Trace Download\n”);
printf (“ 11. Function\n”);
scanf(“%d”, &tmp);

if ((tmp < 12) && (tmp > 0)) //check for valid input
return tmp; //return valid input

else{
printf(“sorry, ‘%d’ is not a choice\n”, tmp); //notify user of error
return which_test(); //recursively re-prompt user

}//else

}//which_test()

/*==
Function: get_repeat
Description: The which_test function queries the user for the number of times to repeat the test
Inputs: (none)
Outputs: int - number specifying the number of repetitions

14

==*/
int get_repeat(){

//declarations
int tmp = 0; //holds the user response

//prompt the user
printf (“\nHow many times should it be repeated? (1 to %d)\n”, MAX_DATA);
scanf(“%d”, &tmp);

if ((tmp < MAX_DATA) && (tmp > 0)) //check for valid input
return tmp; //return valid input

else{
printf(“sorry, ‘%d’ is out of range\n”, tmp); //notify user of error
return get_repeat(); //recursively re-prompt user

}//else
}//get_repeat()

/*==
Function: get_display_setting
Description: The which_test function queries the user for whither the display will be on or off
Inputs: (none)
Outputs: int - 1 -> display on

0 -> dipslay off
==*/
int get_display_setting(){

//declarations
int tmp = 0; //holds the user response

//prompt the user
printf (“\nShould the display be turned ON?\n”);
printf (“ 0. OFF\n”);
printf (“ 1. ON\n”);
scanf(“%d”, &tmp);

if ((tmp < 2) && (tmp > -1)) //check for valid input
return tmp; //return valid input

else{
printf(“sorry, ‘%d’ is not a choice\n”, tmp); //notify user of error
return get_display_setting(); //recursively re-prompt user

}//else
}//get_display_setting()

/*==
Function: run_again
Description: The run_again method asks the user if they want to re-run the program and then recursisvely calls

the program
Inputs: (none)
Outputs: (none)

15

==*/
void run_again(){

//declarations
int tmp = 0; //holds the user response

//prompt the user
printf (“\nRe-run the program?\n”);
printf (“ 1. YES\n”);
scanf(“%d”, &tmp);

if (tmp == 1) //re-run the program for 1
main();

}//run_again()

/*==
Function: setup_coms
Description: sets up the communications with the OSA and puts the chooses the appropriate settings
Inputs: (none)
Outputs: int - number designating the insturment. (zero returned for coms failure)
==*/
int setup_coms(int DisplaySetting){

int OSA = 0; //temp variable which designates the OSA
int crntDisp; //stores the current display setting
char buffer[256]; //stores returned data from the OSA
char cmd[8]; //stores the display on or off command

//printf(“\nSetting up OSA\n”); //report status to user

OSA = ibdev(BDINDX, PRIMARY_ADDR, SECONDARY_ADDR, TIMEOUT, EOTMODE, EOSMODE);

write_IO(OSA, “*RST\n”, 5); //Reset the instrument
write_IO(OSA, “*OPC?\n”, 5); //query for completion
read_IO(OSA, buffer, 255); // read response

write_IO(OSA, “*CLS\n”, 5); //clear the status registers

write_IO(OSA, “DISP?\n”, 5); //query for display setting
read_IO(OSA, buffer, 255); // read response

sscanf(buffer, “%d”, &crntDisp); //parse the returned string

if (crntDisp != DisplaySetting){ //change the display only if needed
sprintf(cmd, “DISP %d\n”, DisplaySetting); //create the command

write_IO(OSA, cmd, 7); //toggles the display setting
write_IO(OSA, “*OPC?\n”, 5); //query for completion
read_IO(OSA, buffer, 255); // read response

}//if(crntDisp != DisplaySetting)

write_IO(OSA, “SYST:COMM:GPIB:BUFF ON\n”, 23); //turn on GPIB buffer

//printf(“Set up complete\n”); //report status to user

return OSA;

}//setup_coms()

16

/*==
Function: run_tests
Description: runs the specified test the specified number of times
Inputs: int instr - designates the OSA

int repeat - the number of times the test will be repeated
int test - specifies whihc test to run
int *data - a pointer to the data output array

Outputs: (none)
==*/
void run_tests(int instr, int repeat, int test, int *data){

for(int i = 0; i < repeat; i++){
pre_test(instr); //reset the insturment before each test

printf(“%d”, i+1);
switch(test){ //run the specified test
case 1: //reset

data[i] = test_reset(instr);
break;

case 2: //automeasure
data[i] = test_AutoMeasure(instr);
break;

case 3: //autoalign
data[i] = test_AutoAlign(instr);
break;

case 4: //zoom
data[i] = test_zoom(instr);
break;

case 5: //Bandwidth
data[i] = test_BW(instr);
break;

case 6: //markers
data[i] = test_markers(instr);
break;

case 7: //integration
data[i] = test_integrate(instr);
break;

case 8: //SMSR
data[i] = test_SMSR(instr);
break;

case 9: //OSNR
data[i] = test_OSNR(instr);
break;

case 10: //Trace Download
data[i] = test_trace(instr);
break;

case 11: //function
data[i] = test_function(instr);
break;

}//switch(test)

}//for()

}//run_tests()

17

/*==
Function: pre_test
Description: runs the required commands before each test (*rst, etc.)
Inputs: int instr - designates the OSA
Outputs: (none)
==*/
void pre_test(int instr){

char buffer[255];

write_IO(instr, “*RST\n”, 5); //Reset the instrument
write_IO(instr, “*OPC?\n”, 5); //query for completion
read_IO(instr, buffer, 255); //read response

}//pre_test()

/*==
Function: test_reset
Description: the test_reset function measure the time required for a instrument reset
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands used:
Command Use
*RST instrument reset
==*/
int test_reset(int instr){

char buffer[255];
int start = clock(); //record start time

write_IO(instr, “*RST;*OPC?\n”, 10); //Reset the instrument
read_IO(instr, buffer, 255); //read response

return (clock()-start); //return the elapsed time
}//test_reset()

/*==
Function: test_AutoAlign
Description: the test_AutoAlign function measure the time required for an AutoAlign
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands used:
Command Use
CAL:ALIG:AUTO AutoAlign
==*/
int test_AutoAlign(int instr){

char buffer[255];
int start = clock(); //record start time

write_IO(instr, “CAL:ALIG:AUTO;*OPC?\n”, 19); //AutoAlign
read_IO(instr, buffer, 255); //read response

return (clock()-start); //return the elapsed time
}//test_AutoAlign()

18

/*==
Function: test_AutoMeasure
Description: the test_AutoMeasure function measure the time required for an AutoMeasure
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands used:
Command Use
DISP:WIND:TRAC:ALL:SCAL:AUTO AutoMeasure
==*/
int test_AutoMeasure(int instr){

char buffer[255];
int start = clock(); //record start time

write_IO(instr, “DISP:WIND:TRAC:ALL:SCAL:AUTO;*OPC?\n”, 35);
//AutoMeasure

read_IO(instr, buffer, 255); //read response

return (clock()-start); //return the elapsed time
}//test_AutoMeasure()

/*==
Function: test_zoom
Description: the test_zoom function measure the time required to change the wavelength limits so that the peak

value is centered
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands:
Command Use
INIT:IMM run a single sweep
CALC1:MARK1:MAX Marker to peak power
CALC1:MARK1:SCEN marker to center
SENS:WAV:SPAN 10nm set the wavelength span to 10nm
CALC1:MARK1:X? get marker wavelength
CALC2:MARK1:Y? get marker amplitude
==*/
int test_zoom(int instr){

char buffer[256]; //temp buffer
int start = clock(); //start time

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //Trigger a sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC1:MARK1:MAX\n”, 16); //set marker to peak value
write_IO(instr, “CALC1:MARK1:SCEN\n”, 17); //center on the marker
write_IO(instr, “SENS:WAV:SPAN 10nm\n”, 19); //set the WL span to 10nm

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //re - sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC1:MARK1:X?\n”, 15); //get marker wavelength
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC1:MARK1:Y?\n”, 15); //get marker amplitude
read_IO(instr, buffer, 255); //read response

return (clock()-start);
}//test_zoom()

19

/*==
Function: test_BW
Description: the test_BW function measure the time required to measure BW
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands
Command Use
sens:wav:star 1530nm Set start wavelength
sens:wav:stop 1570nm Set stop Wavelength
sens:pow:dc:rang:low -60dBm Set sensitivity
init:imm Take Sweep
calc1:mark1:max Marker to peak
calc1:mark1:scen Marker to center
calc1:mark1:x? Read marker wavelength
calc1:mark1:y? Read marker amplitude
sens:bwid:res 0.1 nm set resolution bandwidth to min
sens:wav:span 2nm Set span to highest resolution
calc1:mark1:func:bwid:ndb -20.0 db Select db down where bw is calculated
calc1:mark1:func:bwid:int on Enable bw marker interpolation
calc1:mark1:func:bwid:read wav Sets the BW unit of measurement to WL
calc1:mark1:func:bwid:stat on Enable bandwidth marker
calc1:mark1:func:bwid:res? Returns axis values between markers
===*/
int test_BW(int instr){

char buffer[256]; //temp buffer
int start = clock(); //start time

int tmp = 0;

write_IO(instr, “SENS:WAV:STAR 1530nm\n”,21); //set start WL
write_IO(instr, “SENS:WAV:STOP 1570nm\n”,21); //set stop WL
write_IO(instr, “SENS:POW:DC:RANG:LOW -60dBm\n”,28); //set sensitivity
write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //Trigger a sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC1:MARK1:MAX\n”, 16); //set marker to peak value
write_IO(instr, “CALC1:MARK1:SCEN\n”, 17); //center on the marker

write_IO(instr, “SENS:BWID:RES 0.1nm\n”, 20); //set res bandwidth
write_IO(instr, “SENS:WAV:SPAN 2nm\n”, 18); //set span

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //re - sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr, “calc1:mark1:max\n”,16); //marker to max
write_IO(instr, “calc1:mark1:func:bwid:ndb -20.0\n”,30); //set bw power
write_IO(instr, “calc1:mark1:func:bwid:int on\n”,29); //enable BW marker interpolation
write_IO(instr, “calc1:mark1:func:bwid:read wav\n”,31); //measure BW by WL
write_IO(instr, “calc1:mark1:func:bwid:stat on\n”,30); //enable BW markers
write_IO(instr, “calc1:mark1:func:bwid:res?\n”, 27); //get the BW
read_IO(instr, buffer, 255); //read response

return (clock()-start);
}//test_BW()

20

/*==
Function: test_Markers
Description: the test_Markers function measure the time required to place and recover ten markers
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands
Command Use

SENS:WAV:STAR 1480nm Set start wavelength
SENS:WAV:STOP 1580nm Set stop Wavelength
INIT:IMM run a single sweep
CALC:MARK:X:WAV 1480nm sets the marker position
CALC:MARK:Y? reads the amplitude at the marker position
==*/
int test_markers(int instr){

char buffer[256];
char cmd[50]; //stores the marker placing command
int start = clock();

write_IO(instr,”SENS:WAV:STAR 1480nm\n”,21); //Set start wavelength
write_IO(instr,”SENS:WAV:STOP 1580nm\n”,21); //Set stop Wavelength
write_IO(instr,”INIT:IMM;*OPC?\n”,15); //run a single sweep
read_IO(instr, buffer, 255); //read response

for(int i = 1480; i < 1590; i = i+10){
sprintf(cmd,”CALC:MARK:X:WAV %dnm\n”,i); //build the command
write_IO(instr,cmd,23); //sets the marker position
write_IO(instr,”CALC:MARK:Y?\n”,13); //reads the marker amplitude
read_IO(instr, buffer, 255); //read response

}//for()

return (clock()-start);
}//test_markers()

/*==
Function: test_integrate
Description: the test_integrate function measure the time required to integrate a trace
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands:
Command Use

init:imm Take a single sweep
calc1:mark1:max Marker to peak
calc1:mark1:scen Marker to center
calc:mark1:srl marker to reference level
calc:mark1:stat off Turn marker 1 off
sens:wav:span 10nm Set the Span
sens:bwid:res 5nm Set resolution bandwidth
calc1:tpow:stat 1 turn the tpower state on
calc1:tpow:data? Query the total power

21

==*/
int test_integrate(int instr){

char buffer[256];
int start = clock();

write_IO(instr,”INIT:IMM;*OPC?\n”,15); //run a single sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr,”calc1:mark1:max\n”,16); //Marker to peak
write_IO(instr,”calc1:mark1:scen\n”,17); //Marker to center
write_IO(instr,”calc:mark1:srl\n”,15); //marker to reference level
write_IO(instr,”calc:mark1:stat off\n”,20); //Turn marker 1 off
write_IO(instr,”SENS:wav:span 10nm\n”,19); //Set the Span
write_IO(instr,”sens:bwid:res 5nm\n”,18); //Set resolution bandwidth

write_IO(instr,”INIT:IMM;*OPC?\n”,15); //run a single sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr,”calc1:tpow:stat 1\n”,18); //turn the tpower state on
write_IO(instr,”calc1:tpow:data?\n”,17); //Query the total power
read_IO(instr, buffer, 255); //read response

return (clock() - start);
}//test_integrate()

/*==
Function: test_SMSR
Description: the test_SMSR function measure the time required for a SMSR measurement
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands:
Command Use

SENS:WAV:CENT 1550nm Set center at 1550
SENS:WAV:SPAN 20nm Set span to 20nm
INIT:IMM Take a single sweep
CALC:MARK:MAX Place marker one at Max
CALC:MARK:SCEN Set marker to center
CALC:MARK:SRL Set the marker to reference level
SENS:POW:DC:RANGe:LOW -61DBM Set the sensitivity to -61dBm
CALC:MARK1:Y? Get the peak amplitude
CALC:MARK1:MAX:NEXT Set mark one to the next highest peak

22

==*/
int test_SMSR(int instr){

char buffer[256];
int start = clock();

write_IO(instr, “SENS:WAV:CENT 1550nm\n”, 21); //set center WL
write_IO(instr, “SENS:WAV:SPAN 20nm\n”, 19); //set span

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //Sweep Once
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC:MARK:MAX\n”, 14); //set marker1 to the peak
write_IO(instr, “CALC:MARK:SCEN\n”, 15); //center on the marker
write_IO(instr, “CALC:MARK:SRL\n”, 14); //set the reference level
write_IO(instr, “SENS:POW:DC:RANGe:LOW -61DBM\n”, 29); //set the sensitivity

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //Sweep Once
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC:MARK1:MAX\n”, 15); //set marker1 to the peak
write_IO(instr, “CALC:MARK1:Y?\n”, 14); //get the peak amplitude
read_IO(instr, buffer, 255); //read response

write_IO(instr, “CALC:MARK1:MAX:NEXT\n”, 20); //find the next nighest peak
write_IO(instr, “CALC:MARK1:Y?\n”, 14); //get the peak amplitude
read_IO(instr, buffer, 255); //read response

return (clock()-start);
}//test_SMSR()

/*==
Function: test_OSNR
Description: the test_OSNR function measure the time required for a ONSR measurement
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands
Command Use

SENS:WAV:CENT 1550nm Set center at 1550
SENS:WAV:SPAN 10nm Set span to 10nm
INIT:IMM Take a single sweep
CALC:MARK:MAX Place marker one at Max
CALC:MARK:SCEN Set marker to center
CALC:MARK:SRL Set the marker to reference level
CALC:MARK2:MIN:LEFT Find the local minimum to the left
CALC:MARK3:MIN:RIGH Find the local minimum to the right
CALC:MARK1:Y? Get the peak amplitude
CALC:MARK2:Y? Get the left pit amplitude
CALC:MARK3:Y? Get the right pit amplitude
CALC:MARK1:X? Get the peak Wavelength
CALC:MARK2:X? Get the left pit Wavelength
CALC:MARK3:X? Get the right pit Wavelength

23

==*/
int test_OSNR(int instr){

char buffer[256];
int start = clock();

write_IO(instr,”SENS:WAV:CENT 1550nm\n”,21); //Set center at 1550
write_IO(instr,”SENS:WAV:SPAN 20nm\n”,19); //Set span to 10nm

write_IO(instr,”INIT:IMM;*OPC?\n”,15); //Take a single sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK:MAX\n”,14); //Place marker one at Max
write_IO(instr,”CALC:MARK:SCEN\n”,15); //Set marker to center
write_IO(instr,”CALC:MARK:SRL\n”,14); //Set the marker to ref level

write_IO(instr,”INIT:IMM;*OPC?\n”,15); //Take a single sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK2:MIN:LEFT\n”,20); //Find the left local minimum
write_IO(instr,”CALC:MARK3:MIN:RIGH\n”,20); //Find the right local minimum

write_IO(instr,”CALC:MARK1:Y?\n”,14); //Get the peak amplitude
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK2:Y?\n”,14); //Get the left pit amplitude
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK3:Y?\n”,14); //Get the right pit amplitude
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK1:X?\n”,14); //Get the peak Wavelength
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK2:X?\n”,14); //Get the left pit Wavelength
read_IO(instr, buffer, 255); //read response

write_IO(instr,”CALC:MARK3:X?\n”,14); //Get the right pit Wavelength
read_IO(instr, buffer, 255); //read response

return(clock()-start);
}//test_OSNR

/*==
Function: test_trace
Description: the test_trace function measure the time required to downlaod a trace
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands
Command Use
sens:swe:poin 101 Set trace length to 101
init:imm Take sweep
form real Set data format to real
trac:data:y? tra Request data

24

==*/
int test_trace(int instr){

char buffer[820]; //buffer must be big enough for all of the trace data

int tmp = test_zoom(instr); //use’test_zoom’ to set up the OSA

int start = clock(); //record start time

write_IO(instr, “SENS:SWE:POIN 101\n”, 18); //set to 101 trace pts
write_IO(instr, “FORM REAL\n”, 10); //Real data format

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr, “TRAC:DATA:Y? TRA\n”, 17); //query trace data
read_IO(instr, buffer, 820); //read response

return (clock()-start); //return the elapsed time
}//test_trace

/*==
Function: test_Function
Description: the test_Function function measure the time required to normalize a trace
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms

Commands:
Command Use

Sens:bwid:res 10nm Fix resolution bw
init:imm Take a single sweep
Trac:Feed:Cont TrA, Alw continuously update trace A
disp:Wind:Trac:Stat TrB,ON Turn on Trace B
Trac:Feed:Cont TrB, Alw continuously Update trace B
disp:Wind:Trac:Stat TrC,ON Turn on Trace C
Trac:Feed:Cont TrC, Alw continuously Update trace B
Trac:Feed:Cont TrB,Nev Freeze trace B
init:cont on Set up continuous sweep
Calc3:Math:Expr (TRA/TRB) Normalize Trace A to B
Calc3:Math:Stat On Turn on normalization

25

==*/
int test_function(int instr){

char buffer[256];
int start = clock();

write_IO(instr, “SENS:BWID:RES 10nm\n”, 19); // set the res bandwidth

write_IO(instr, “INIT:IMM;*OPC?\n”, 15); //Trigger a sweep
read_IO(instr, buffer, 255); //read response

write_IO(instr, “TRAC:FEED:CONT TRA, ALW\n”, 24); //always update trace A
write_IO(instr, “DISP:WIND:TRAC:STAT TRB,ON\n”, 27); //turn trace B on
write_IO(instr, “TRAC:FEED:CONT TRB, ALW\n”, 24); //always update trace B
write_IO(instr, “DISP:WIND:TRAC:STAT TRC,ON\n”, 27); //turn trace C on
write_IO(instr, “TRAC:FEED:CONT TRC, ALW\n”, 24); //always update trace C
write_IO(instr, “TRAC:FEED:CONT TRB, NEV\n”, 24); //Freeze trace B
write_IO(instr, “CALC3:MATH:EXPR (TRA/TRB)\n”, 26); //C = A - B
write_IO(instr, “CALC3:MATH:STAT ON\n”, 19); //turn on math

write_IO(instr, “INIT:CONT ON\n”, 13); //turn on continuous sweep

return (clock()-start);
}//test_function

/*==
Function: clean_up
Description: the clean_up function makes sure that the display is turned back on and that the instrument is

returned to local control.
Inputs: int instr - an integer which represents the instrument
Outputs: int - the test time in ms
==*/
void clean_up(int instr){

char buffer[256];
printf(“cleaning up\n”); //status report

write_IO(instr, “DISP ON\n”, 8); //turn the display on
write_IO(instr, “*OPC?\n”, 5); //query for completion
read_IO(instr, buffer, 255); //read response

ibloc(instr); //set OSA to local
ibonl(instr, 0); //take OSA off line

printf(“clean up complete\n”); //status report
}//clean_up()

/*==
Function: log_data
Description: The log_data function outputs the data to a CSV text file.

it also outputs the name of the test and whether the display was on or not. Finally, it calculates the
average time and outputs that. All of the data is output onto a single line and appended to the
existing file. this allows multiple tests to write to the same file.

Inputs: int data[] - the time values of the tests run
int repeat - the number tests which were run
int test - the number of the test which was run
int dispOn - whether the display was on

Outputs: none

26

==*/
void log_data(int data[], int repeat, int test, int dispOn){

FILE *fp; //file pointer
char test_name[16]; //the name of the test which was run
char disp_str[4]; //whether the display was on
char csv_data[256]; //output buffer
double avg = 0 ; //the calculated average of the data points
sprintf(csv_data,”\0”); //initialze the data string

printf(“\nwritting file\n”); //status report

get_test_name(test,test_name); //convert the test number to a name string

if(dispOn == 1) //convert the dispOn arg to a null terminated string
sprintf(disp_str, “ON\0”);

else
sprintf(disp_str, “OFF\0”);

for(int i=0;i<repeat;i++){ //step through the data and.....
avg = avg + data[i]; //sum the data
sprintf(csv_data,”%s,%d\0”,csv_data,data[i]); //add point to the string

}
avg = avg / repeat; //calculate the average

fp = fopen(FILENAME1, “a”); //open file in append mode
fprintf(fp,”%s%s%s,%f\n”,test_name,disp_str,csv_data,avg); //construct the output string and send it to the file
fclose(fp); //close file

}//log_data()

/*==
Function: get_test_name
Description: this function simply converts the integer representation to a

short description of a test
Inputs: int test - the number of the test

char *name - pointer to the output string
Outputs: none

27

==*/
void get_test_name(int test, char *name){

switch(test){ //run the specified test
case 1: //reset

sprintf(name,”Reset,\0”);
break;

case 2: //automeasure
sprintf(name,”AutoMeasure,\0”);
break;

case 3: //autoalign
sprintf(name,”AutoAlign,\0”);
break;

case 4: //zoom
sprintf(name,”Zoom,\0”);
break;

case 5: //Bandwidth
sprintf(name,”Bandwidth,\0”);
break;

case 6: //markers
sprintf(name,”Markers,\0”);
break;

case 7: //integration
sprintf(name,”Integration,\0”);
break;

case 8: //SMSR
sprintf(name,”SMSR,\0”);
break;

case 9: //OSNR
sprintf(name,”OSNR,\0”);
break;

case 10: //trace download
sprintf(name,”Trace Download,\0”);
break;

case 11: //function
sprintf(name,”Function,\0”);
break;

}//switch(test)
}
/*==
Function: write_IO
Description: The Write_IO sub combines the board level write function and the error check. The reason for this

short sub is due to simplify the code as these functions are almost always used together.
Inputs: int instr - an integer which represents the instrument

char cmd[] - the command to be written
int size - the length of the command string

Outputs: none
==*/
void write_IO(int instr, char cmd[], int size){

ibwrt (instr, cmd, size); //querry for the id number
if (ibsta & ERR) Error_Code(strcat(“could not write command: “,cmd));

//check for errors
}

28

/*==
Function: read_IO
Description: The read_IO sub combines the board level read function and the error check. The reason for this short

sub is due to simplify the code as these functions are almost always used together.
Inputs: int instr - an integer which represents the instrument

char rspns[] - the target loacation of the returned data
int size - the number of caharacters ot be read back

Outputs: none
==*/
void read_IO(int instr, char rspns[], int size){

ibrd (instr, rspns, size); //querry for the id number
if (ibsta & ERR) Error_Code(“did not recieve response”);

//check for errors
}

/*==
Function: Error_Code
Description: The Error_Code function displays an error message and stops the pogram if any errors are

encountered
Inputs: char[] desc - a description of the error
Outputs: none
==*/

void Error_Code(char desc[]){

//GPIB Error Codes
char ErrorCodes[21][5] = {“EDVR”, “ECIC”, “ENOL”, “EADR”, “EARG”,

“ESAC”, “EABO”, “ENEB”, “EDMA”, “”,
“EOIP”, “ECAP”, “EFSO”, “”, “EBUS”,
“ESTB”, “ESRQ”, “”, “”, “”, “ETAB”};

printf(“Error : %s\nibsta = 0x%x iberr = %d (%s)\n”,
desc, ibsta, iberr, ErrorCodes[iberr]);

exit(1);
} //Error_Code()

29

Appendix C - Test Setup

PC set up
• 450 MHz Intel Pentium® III processor with 512 KB Cache and 128 MB of Ram
• Windows® NT 4.0 (Service Pack 4)
• National Instruments PCI-GPIB card with NI 488.2 Version 1.6 (August 1999) drivers

OSA
Agilent 86145B with vB.04.00 (prototype) firmware

Source
Agilent 83403A 1550nm FP laser source.
The laser source remained on and unmodulated for all of the tests and was fed directly into the OSA input via a
40 cm, 9/125 connector fiber

Pentium is a U.S. registered trademark of Intel Corporation.
Windows NT is a U.S. registered trademark of Microsoft Corporation.

Agilent Technologies’
Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and
problems. We strive to ensure that you get the test and measurement capabilities you paid for and
obtain the support you need. Our extensive support resources and services can help you choose
the right Agilent products for your applications and apply them successfully. Every instrument and
system we sell has a global warranty. Support is available for at least five years beyond the
production life of the product. Two concepts underlie Agilent’s overall support policy: “Our
Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised
performance and functionality. When you are choosing new equipment, we will help you with
product information, including realistic performance specifications and practical recommendations
from experienced test engineers. When you use Agilent equipment, we can verify that it works
properly, help with product operation, and provide basic measurement assistance for the use of
specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement
services, which you can purchase according to your unique technical and business needs. Solve
problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost
upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system
integration, project management, and other professional engineering services. Experienced Agilent
engineers and technicians worldwide can help you maximize your productivity, optimize the return
on investment of your Agilent instruments and systems, and obtain dependable measurement
accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test & measurement needs.

Online assistance:
www.agilent.com/comms/lightwave

Phone or Fax
United States:
(tel) 1 800 452 4844

Canada:
(tel) 1 877 894 4414
(fax) (905) 282 6495

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599

Australia:
(tel) 1 800 629 485
(fax) (61 3) 9210 5947

New Zealand:
(tel) 0 800 738 378
(fax) 64 4 495 8950

Asia Pacific:
(tel) (852) 3197 7777
(fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 2001 Agilent Technologies
Printed in USA June 1, 2001
5988-2918EN

