11612A/B-01

S E R V I C E N O T E

SUPERSEDES: None

HP 11612A K20 Bias Network HP 11612A K22 Bias Network HP 11612B K21 Bias Network

Serial Numbers: Not serialized

Ship Dates: August 15, 1993 to December 14, 1993.

Modification to correct the open DC force path caused by incorrect wiring.

To Be Performed By: Customer or HP-Qualified Personnel

Tools Required:

Ohmmeter Screwdriver - posidriv #1 Needle nose pliers Soldering iron Solder Solvent to remove excess solder flux

Continued

DATE: 24 January 1994

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATION:		
MODIFICATION RECOMMENDED		
ACTION CATEGORY:	☐ IMMEDIATELY ☐ ON SPECIFIED FAILURE ■ AGREEABLE TIME	STANDARDS: LABOR: 1.0 Hour
LOCATION CATEGORY:	CUSTOMER INSTALLABLE ON-SITE HP LOCATION	SERVICE
AVAILABILITY:	PRODUCT'S SUPPORT LIFE	RESPONSIBLE UNTIL: End of Support Life
AUTHOR: DL	ENTITY: 5300	ADDITIONAL INFORMATION:

© 1994 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.

Situation:

It is possible that the bias network is wired incorrectly. The wiring error causes a DC open circuit in the path from the center pin of the DC FORCE connector to the center pin of the DC/RF OUT connector. DC biasing of the device-under-test is impossible. The error also causes a leakage path from the center pin of the DC FORCE connector to ground and bias network case. The leakage path has a DC resistance of 51 Ohms.

Solution:

Move the DC FORCE wire to the correct location.

Action:

Check for the wiring error:

A. With an ohmmeter:

- Disconnect any connections to the DC FORCE and SENSE triax BNC connectors of the bias network.
- 2. Disconnect any connection to the DC/RF OUT connector.
- Measure the DC resistance from the center pin of the DC FORCE connector to the outer conductor of the RF/DC OUT connector. Take care to not damage the connectors. The DC resistance should be greater than 10 megohms.
- 4. Measure the DC resistance from the center pin of the DC FORCE connector to the center pin of the RF/DC OUT connector. The DC resistance should be less than 10 Ohms.
- 5. If either resistance measurement fails, continue with the visual inspection below.

B. With a visual inspection:

- 1. Disconnect all connections from the bias network.
- 2. Remove the six screws attaching the two halves of the case.
- 3. Separate the two case halves.
- 4. Check the red wire going from the center conductor of the DC FORCE connector to the force bias tee. The wire should connect to the terminal lug to which a capacitor and beaded wire are also connected. If it is incorrectly wired, it will be connected to the terminal lug to which a capacitor and resistor are connected.
- 5. If the red wire is incorrectly wired, continue with the wiring correction below.

SERVICE NOTE 11612A/B-01 Page 3

Wiring correction instructions:

- 1. Cut or unsolder the DC FORCE red wire from the terminal lug located on the terminal strip mounted on the force bias tee.
- Connect and solder the red wire to the other terminal lug which has a capacitor and beaded wire connected. Clean off any residual soldering flux that could provide a current leakage path to ground.
- 3. The final location point will be similar to the location point of the DC SENSE blue wire on the sense bias tee.
- 4. Confirm the repair by performing the 'Check for the wiring error with an ohmmeter' above. If the resistances are correct, re-attach the case halves making certain that no wires short out to the case.